

Anna Zaborowska on behalf of the FCC-hh detector group

6th FCC Physics Workshop, January 24th 2023

Conceptual design of an experiment at the FCC-hh, a future 100 TeV hadron collider

doi:10.1140/epjst/e2019-900087-0

Study of the FCC-hh detector concept is summarised in Vol 3 of the FCC CDR, published in 2019.

January 24th 2023

Conceptual design of an experiment at the FCC-hh, a future 100 TeV hadron collider

READ VOLUME 3

doi:10.1140/epjst/e2019-900087-0

Study of the FCC-hh detector concept is summarised in Vol 3 of the FCC CDR, published in 2019.

Summary could not cover all the activities within the FCC-hh detector group.

A detailed report was prepared at the same time and has finally been published in 2022.

Conceptual design of an experiment at the FCC-hh, a future 100 TeV hadron collider $% \mathcal{A}(\mathcal{A})$

doi:10.23731/CYRM-2022-002

CERN Yellow Monographs	Reports:	CENN-3C	23-002
	Con	nceptual desig	gn
Editors: M. Mangano W. Riegter	a future 100 TeV	hadron collid	er
	CENY		

Anna Zaborowska

Conceptual design of an experiment at the FCC-hh, a future 100 TeV hadron collider

Detailed summary of work on a design of **general purpose detector**.

A reference layout has been studied in terms of performance, discussed, and parameterised.

Parameterisation is used to evaluate **key benchmark physics topics**.

Contents

1	Introduction	1
2	Benchmark processes and detector requirements from physics	s 7
3	Detector requirements from environment	17
4	Software	31
5	Magnet systems	43
6	Tracker and vertex detector	77
7	Calorimetry	125
8	Muon system	213
9	Trigger/DAQ	225
10	FCC-hh physics benchmark studies	229
11	Cost goals, strategic $R\&D$	277

Anna Zaborowska

22

FCC collider

doi:10.1140/epjst/e2019-900087-0

- Same tunnel for FCC-ee and FCC-hh
- Similar layout to LHC
- Two high luminosity interaction points (PA, PG)
- Two lower luminosity points (PL, PB)

 $(^{3}/_{22})$

FCC collider

doi:10.1140/epjst/e2019-900087-0

- Same tunnel for FCC-ee and FCC-hh
- Similar layout to LHC
- Two high luminosity interaction points (PA, PG)
- Two lower luminosity points (PL, PB)

FCC-hh experiment: we decided to demonstrate a single general purpose detector

Key baseline parameters

Parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14		27	100
Circumference	km	26.7			97.8
Peak luminosity, nominal (ultimate)	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1(2)	5(7.5)	16	30
bunch spacing	ns		2	25	
Number of bunches		2808	2760	2808	10600
Goal integrated luminosity	ab^{-1}	0.3	3	10	30
σ_{inel}	mbarn	80		86	103
σ_{tot}	mbarn		108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak avg PU events/BC, nominal (ultimate)		25(50)	130(200)	435	950
RMS luminous region σ_z	mm	45	5	7	49
Line PU density	mm^{-1}	0.2	1.0	3.2	8.1
Time PU density	$\rm ps^{-1}$	0.1	0.29	0.97	2.43
$dN_{ch}/d\eta _{\eta=0}$			6	7.2	10.2
Charged tracks per collision N_{ch}		70	70	85	122
Rate of charged tracks	GHz	59	297	1234	3942
$\langle p_{\mathrm{T}} angle$	${ m GeV}/c$		0.6	0.7	0.76
Bending radius for $\langle p_{\rm T} \rangle$ at B=4 T	cm	47	47	49	59

Key baseline parameters

Parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14		27	100
Circumference	km		26.7		97.8
Peak luminosity, nominal (ultimate)	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1(2)	5(7.5)	16	30
bunch spacing	ns	25			
Number of bunches		2808	2760	2808	10600
Goal integrated luminosity	ab^{-1}	0.3	3	10	30
σ_{inel}	mbarn		80	86	103
σ_{tot}	mbarn		108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak avg PU events/BC, nominal (ultimate)		25(50)	130(200)	435	950
RMS luminous region σ_z	mm	45	5	7	49
Line PU density	mm^{-1}	0.2	1.0	3.2	8.1
Time PU density	ps^{-1}	0.1	0.29	0.97	2.43
$dN_{ch}/d\eta _{n=0}$	-		6	7.2	10.2
Charged tracks per collision N_{ch}		70	70	85	122
Rate of charged tracks	GHz	59	297	1234	3942
$\langle p_{\mathrm{T}} angle$	${ m GeV}/c$		0.6	0.7	0.76
Bending radius for $\langle p_{\rm T} \rangle$ at B=4 T	cm	47	47	49	59

Key baseline parameters

Parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E _{cm}	TeV	14		27	100
Circumference	km		26.7		97.8
Peak luminosity, nominal (ultimate)	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1(2)	5(7.5)	16	30
bunch spacing	ns		2	25	
Number of bunches		2808	2760	2808	10600
Goal integrated luminosity	ab^{-1}	0.3	3	10	30
σ_{inel}	mbarn		80	86	103
σ_{tot}	mbarn		108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak avg PU events/BC, nominal (ultimate)		25 (50)	130(200)	435	950
RMS luminous region σ_z	mm	45	5	7	49
Line PU density	mm^{-1}	0.2	1.0	3.2	8.1
Time PU density	ps^{-1}	0.1	0.29	0.97	2.43
$\left[\frac{dN_{ch}}{d\eta} \right]_{\eta=0}$			6	7.2	10.2
Charged tracks per collision N_{ch}		70	70	85	122
Rate of charged tracks	GHz	59	297	1234	3942
$\langle p_{\rm T} \rangle$	${ m GeV}/c$		0.6	0.7	0.76
Bending radius for $\langle p_{\rm T} \rangle$ at B=4 T	cm	47	47	49	59

Key baseline parameters

Parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14		27	100
Circumference	$\rm km$	26.7			97.8
Peak luminosity, nominal (ultimate)	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1(2)	5(7.5)	16	30
bunch spacing	ns	25			
Number of bunches		2808	2760	2808	10600
Goal integrated luminosity	ab^{-1}	0.3	3	10	30
σ_{inel}	mbarn		80	86	103
σ_{tot}	mbarn		108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak avg PU events/BC, nominal (ultimate)		25 (50)	130(200)	435	950
RMS luminous region σ_z	mm	45	5	7	49
Line PU density	mm^{-1}	0.2	1.0	3.2	8.1
Time PU density	ps^{-1}	0.1	0.29	0.97	2.43
$dN_{ch}/d\eta _{\eta=0}$			6	7.2	10.2
Charged tracks per collision N_{ch}		70	70	85	122
Rate of charged tracks	GHz	59	297	1234	3942
$\langle p_{\mathrm{T}} \rangle$	${ m GeV}/c$		0.6	0.7	0.76
Bending radius for $\langle p_{\rm T} \rangle$ at B=4 T	cm	47	47	49	59

FCC-hh an extremely high luminosity machine.

- huge particle/data rates
- significantly higher radiation level (especially in inner/forward detector)

Key baseline parameters

Parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14		27	100
Circumference	$\rm km$	26.7			97.8
Peak luminosity, nominal (ultimate)	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1(2)	5(7.5)	16	30
bunch spacing	ns	25			
Number of bunches		2808	2760	2808	10600
Goal integrated luminosity	ab^{-1}	0.3	3	10	30
σ_{inel}	mbarn	80		86	103
σ_{tot}	mbarn		108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak avg PU events/BC, nominal (ultimate)		25(50)	130(200)	435	950
RMS luminous region σ_z	$^{\rm mm}$	45	5	7	49
Line PU density	mm^{-1}	0.2	1.0	3.2	8.1
Time PU density	$\rm ps^{-1}$	0.1	0.29	0.97	2.43
$dN_{ch}/d\eta _{\eta=0}$			6	7.2	10.2
Charged tracks per collision N_{ch}		70	70	85	122
Rate of charged tracks	m GHz	59	297	1234	3942
$\langle p_{\mathrm{T}} \rangle$	${ m GeV}/c$		0.6	0.7	0.76
Bending radius for $\langle p_{\rm T} \rangle$ at B=4 T	cm	47	47	49	59

FCC-hh an extremely high luminosity machine.

- huge particle/data rates
- significantly higher radiation level (especially in inner/forward detector)

Key baseline parameters

Parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14		27	100
Circumference	$\rm km$	26.7			97.8
Peak luminosity, nominal (ultimate)	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1(2)	5(7.5)	16	30
bunch spacing	\mathbf{ns}		2	25	
Number of bunches		2808	2760	2808	10600
Goal integrated luminosity	ab^{-1}	0.3	3	10	30
σ_{inel}	mbarn		80	86	103
σ_{tot}	mbarn		108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak avg PU events/BC, nominal (ultimate)		25(50)	130(200)	435	950
RMS luminous region σ_z	$\mathbf{m}\mathbf{m}$	45	5	7	49
Line PU density	mm^{-1}	0.2	1.0	3.2	8.1
Time PU density	ps^{-1}	0.1	0.29	0.97	2.43
$\left. dN_{ch}/d\eta \right _{n=0}$			6	7.2	10.2
Charged tracks per collision N_{ch}		70	70	85	122
Rate of charged tracks	GHz	59	297	1234	3942
$\langle p_{\mathrm{T}} angle$	${ m GeV}/c$		0.6	0.7	0.76
Bending radius for $\langle p_{\rm T} \rangle$ at B=4 T	cm	47	47	49	59

FCC-hh an extremely high luminosity machine.

- huge particle/data rates
- significantly higher radiation level (especially in inner/forward detector)

 $^{5}/_{22}$

More forward physics \rightarrow large acceptance

• precision momentum spectroscopy and energy measurements up to $|\eta| < 4$

More forward physics \rightarrow large acceptance

- precision momentum spectroscopy and energy measurements up to $|\eta| < 4$
- tracking and calorimetry up to $|\eta| < 6$

FCC-hh detector concept

ECC-bb Simulation

Physics objects will be more boosted

Requirement of high granularity (both in tracker and calorimeters)

e.g.: W($p_{\rm T}$ =10 TeV) will have decay products separated by $\Delta R = 0.01$.

Long-lived particles live longer:

- 5 TeV tau lepton can travel 10 cm before decaying
- 5 TeV b-hadron can travel 50 cm before decaying

FCC-hh reference detector layout

FCC-hh reference detector layout

- 50 m long, 20 m diameter
- cavern length 66 m
- L^* of FCC 40 m

 $^{8}/_{22}$

1 MeV neutron equivalent fluence for 30 ab^{-1}

1 MeV neutron equivalent fluence for 30 ab^{-1}

 $^{9}/_{22}$

1 MeV neutron equivalent fluence for 30 ab^{-1}

maximum at $\sim 10^{18}~{\rm cm}^{-2}$

 $^{9}/_{22}$

1 MeV neutron equivalent fluence for 30 ab^{-1}

maximum at $\sim 10^{18}~{\rm cm}^{-2}$

9/22

Charged particle fluence rate for $\overline{L = 30 \cdot 10^{34} cm^{-2} s^{-1}}$

Tracker: first IB layer (2.5 cm): $\sim 12 \text{ GHz cm}^{-2}$

Charged particle fluence rate for $L=30\cdot 10^{34} cm^{-2} s^{-1}$

Tracker: first IB layer (2.5 cm): $\sim 12 \text{ GHz cm}^{-2}$ external part: $\sim 3 \text{ MHz cm}^{-2}$ Charged particle fluence rate [cm⁻²s⁻¹, 10¹² 1600 10¹⁰ 1400 1200 10⁸ E 1000 800 10⁶ 600 10⁴ 400 10^{2} 200 10⁰ 0 0 500 1000 1500 2000 2500 3000 3500 4000 z [cm]

Charged particle fluence rate for $\overline{L = 30 \cdot 10^{34} cm^{-2} s^{-1}}$

Tracker: first IB layer (2.5 cm): $\sim 12 \text{ GHz cm}^{-2}$ external part: $\sim 3 \text{ MHz cm}^{-2}$ Charged particle fluence rate [cm⁻²s⁻¹ 10¹² 1600 10^{10} 1400 1200 10⁸ E 1000 800 10⁶ 600 10⁴ 400 10^{2} 200 10⁰ 0 0 500 1000 1500 2000 2500 3000 3500 4000 z [cm]

22

Charged particle fluence rate for $\overline{L = 30 \cdot 10^{34} cm^{-2} s^{-1}}$

Tracker: first IB layer (2.5 cm): $\sim 12 \text{ GHz cm}^{-2}$ external part: $\sim 3 \text{ MHz cm}^{-2}$ Charged particle fluence rate [cm⁻²s⁻¹ 10¹² 1600 10^{10} 1400 1200 10⁸ E 1000 800 10⁶ 600 10⁴ 400 10^{2} 200 10^{0} 0 500 1000 1500 2000 2500 3000 3500 4000 0 z [cm]

Barrel & outer endcap muon chambers: $$<\!0.5~\rm kHz~cm^{-2}$$

Inner endcap muon chambers: $\sim 10 \ \rm kHz \ cm^{-2} \ \ similar \ to \ \rm HL-LHC}$

22

Magnet

Magnet

Anna Zaborowska

January 24th 2023

/22

Anna Zaborowska

January 24th 2023

22

12/22

Stray field and service cavern

 \rightarrow

122

Average distance between vertices at z=0: $\sim 120\,\mu$ m in space and 0.4 s in time For HL-LHC it is $\sim\!\!1\,\mathrm{mm}$ and 3 ps

beampipe

beamline

Average distance between vertices at z=0: $\sim 120\,\mu$ m in space and 0.4 s in time For HL-LHC it is $\sim\!\!1\,\mathrm{mm}$ and 3 ps

Average distance between vertices at z=0: $\sim 120 \,\mu$ m in space and 0.4s in time For HL-LHC it is $\sim 1 \,\text{mm}$ and 3 ps

Average distance between vertices at z=0: $\sim 120 \,\mu$ m in space and 0.4s in time For HL-LHC it is $\sim 1 \,\text{mm}$ and 3 ps

Average distance between vertices at z=0: $\sim 120\,\mu$ m in space and 0.4s in time For HL-LHC it is ${\sim}1\,{\rm mm}$ and 3 ps

Average distance between vertices at z=0: $\sim 120 \,\mu$ m in space and 0.4 s in time For HL-LHC it is $\sim 1 \,\text{mm}$ and 3 ps

Average distance between vertices at z=0: $\sim 120 \,\mu$ m in space and 0.4 s in time For HL-LHC it is $\sim 1 \,\text{mm}$ and 3 ps

Average distance between vertices at z=0: $\sim 120 \,\mu$ m in space and 0.4 s in time For HL-LHC it is $\sim 1 \,\text{mm}$ and 3 ps

Anna Zaborowska

FCC-hh detector concept

 $zoom \times 8$

- Much more granular than ATLAS calorimeter $(\times 10)$.
- High longitudinal and lateral segmentation possible with straight, multilayer electrodes.

LAr Pb

PCB

- Much more granular than ATLAS calorimeter (×10).
- High longitudinal and lateral segmentation possible with straight, multilayer electrodes.

- Much more granular than ATLAS calorimeter (×10).
- High longitudinal and lateral segmentation possible with straight, multilayer electrodes.
- Huge impact of pile-up in calorimeter standalone measurements need to subtract pile-up using pile-up track identification.

- Much more granular than ATLAS calorimeter ($\times 10$).
- High longitudinal and lateral segmentation possible with straight, multilayer electrodes.
- Huge impact of pile-up in calorimeter standalone measurements need to subtract pile-up using pile-up track identification.

Hadronic barrel calorimeter

- ATLAS-like tile calorimeter with scintillating tiles/WLS fibres + stainless steel and lead (1:3.3:1.3)
- SiPM readout: faster, less noise, less space
- 3-4 times higher granularity in $\Delta\eta\Delta\varphi=0.025\times0.025$ and 10 layers
- For containment of multi-TeV jets (98%): ECAL + HCAL depth $\sim 11\lambda$ at $\eta = 0$.

Hadronic barrel calorimeter

- ATLAS-like tile calorimeter with scintillating tiles/WLS fibres + stainless steel and lead (1:3.3:1.3)
- SiPM readout: faster, less noise, less space
- 3-4 times higher granularity in $\Delta\eta\Delta\varphi=0.025\times0.025$ and 10 layers
- For containment of multi-TeV jets (98%): ECAL + HCAL depth $\sim 11\lambda$ at $\eta = 0$.

Preliminary no-noise (PU) studies

Hadronic barrel calorimeter

- ATLAS-like tile calorimeter with scintillating tiles/WLS fibres + stainless steel and lead (1:3.3:1.3)
- SiPM readout: faster, less noise, less space
- 3-4 times higher granularity in $\Delta\eta\Delta\varphi=0.025\times0.025$ and 10 layers
- For containment of multi-TeV jets (98%): ECAL + HCAL depth $\sim 11\lambda$ at $\eta = 0$.

/22

vital for jets in B field

- Combined tracker/muon system performance is important, not standalone muon performance
- Combined muon momentum resolution can achieve 10% even for momenta of 20 TeV/c at $\eta = 0$.

- Combined tracker/muon system performance is important, not standalone muon performance
- Combined muon momentum resolution can achieve 10% even for momenta of 20 TeV/c at $\eta = 0$.
- The task of the muon system is triggering and muon identification.

- Combined tracker/muon system performance is important, not standalone muon performance
- Combined muon momentum resolution can achieve 10% even for momenta of 20 TeV/c at $\eta = 0$.
- The task of the muon system is triggering and muon identification.
- 4-5% standalone momentum resolution can be achieved in at $\eta = 0, 30\%$ at $\eta = 2.5$ by measuring the angle at which the muon exits the calorimeters.

- Combined tracker/muon system performance is important, not standalone muon performance
- Combined muon momentum resolution can achieve 10% even for momenta of 20 TeV/c at $\eta = 0$.
- The task of the muon system is triggering and muon identification.
- 4-5% standalone momentum resolution can be achieved in at $\eta = 0, 30\%$ at $\eta = 2.5$ by measuring the angle at which the muon exits the calorimeters.
- In forward muon system, standalone momentum measurement and triggering can only be achieved when using a forward dipole (like ALICE, LHCb).

- Combined tracker/muon system performance is important, not standalone muon performance
- Combined muon momentum resolution can achieve 10% even for momenta of 20 TeV/c at $\eta=0.$
- The task of the muon system is triggering and muon identification.
- 4-5% standalone momentum resolution can be achieved in at $\eta = 0, 30\%$ at $\eta = 2.5$ by measuring the angle at which the muon exits the calorimeters.
- In forward muon system, standalone momentum measurement and triggering can only be achieved when using a forward dipole (like ALICE, LHCb).
- Gas detectors similar to the ones employed for HL-LHC are good candidates for the muon systems.

- Muon rate dominated by c and b decays
- In contrast to leptonic decays from W, Z, t these muons are not isolated but accompanied by particles seen in calorimeters
- Isolation with calorimeter information is key for W/Z/t triggering.

22

Taking as an example ATLAS phase-II trigger:

- Calorimetry will be digitized at 40 MHz and sent via optical fibers to L1 electronics outside the cavern at **25 TByte**/s to create the L1 Trigger at about 10 μ s latency.
- Muon system will also be read out at 40 MHz to produce a L1 Trigger.

Taking as an example ATLAS phase-II trigger:

- Calorimetry will be digitized at 40 MHz and sent via optical fibers to L1 electronics outside the cavern at **25 TByte**/s to create the L1 Trigger at about 10 μ s latency.
- Muon system will also be read out at 40 MHz to produce a L1 Trigger.
- Reading out the FCC detector calorimetry and muon system at 40 MHz will result in **200-300 TByte/s**, which seems feasible.

Taking as an example ATLAS phase-II trigger:

- Calorimetry will be digitized at 40 MHz and sent via optical fibers to L1 electronics outside the cavern at **25 TByte/s** to create the L1 Trigger at about 10 µs latency.
- Muon system will also be read out at 40 MHz to produce a L1 Trigger.
- Reading out the FCC detector calorimetry and muon system at 40 MHz will result in **200-300 TByte/s**, which seems feasible.

Question:

• Can the L1 Calo+Muon Trigger have enough selectivity to allow readout of the tracker at a reasonable rate of e.g. 1 MHz ?

Taking as an example ATLAS phase-II trigger:

- Calorimetry will be digitized at 40 MHz and sent via optical fibers to L1 electronics outside the cavern at **25 TByte/s** to create the L1 Trigger at about 10 µs latency.
- Muon system will also be read out at 40 MHz to produce a L1 Trigger.
- Reading out the FCC detector calorimetry and muon system at 40 MHz will result in **200-300 TByte/s**, which seems feasible.

Question:

- Can the L1 Calo+Muon Trigger have enough selectivity to allow readout of the tracker at a reasonable rate of e.g. 1 MHz ?
- Un-triggered readout of the detector at 40MHz would result in **3000 TByte/s** over optical links to the underground service cavern and/or a HLT computing farm on the surface.

FCC-specific software			HEPPY
	Gaussino	F	PODIO
Delphes	DD4hep		
	Geant 4 Gaudi	RO	от
LCG externals, Fastjet			

- FCC Software is shared between FCC-hh and FCC-ee
- Recent changes base on key4HEP (arXiv:2111.09874)

- FCC Software is shared between FCC-hh and FCC-ee
- Recent changes base on key4HEP (arXiv:2111.09874)
- Many R&D topics relevant already for HL-LHC

CMS NOTE 2022/008

Summary

• Feasability study of general purpose detector for FCC-hh has been concluded and described in:

- Feasability study of general purpose detector for FCC-hh has been concluded and described in:
- FCC-hh CDR with a summary of this study $_{\rm doi:10.1140/epjst/e2019-900087-0}$

- Feasability study of general purpose detector for FCC-hh has been concluded and described in:
- FCC-hh CDR with a summary of this study doi:10.1140/epjst/e2019-900087-0
- Dedicated report on FCC-hh experiment published as CERN Yellow Report doi:10.23731/CYRM-2022-002

- Feasability study of general purpose detector for FCC-hh has been concluded and described in:
- FCC-hh CDR with a summary of this study doi:10.1140/epjst/e2019-900087-0
- Dedicated report on FCC-hh experiment published as CERN Yellow Report doi:10.23731/CYRM-2022-002
- Key R&D items have been identified:
 - ultra-radiation hard silicon sensors,
 - high precision timing detectors,
 - low power radiation hard optical links,
 - high granularity liquid argon calorimetry,
 - efficient software.

- Feasability study of general purpose detector for FCC-hh has been concluded and described in:
- FCC-hh CDR with a summary of this study doi:10.1140/epjst/e2019-900087-0
- Dedicated report on FCC-hh experiment published as CERN Yellow Report doi:10.23731/CYRM-2022-002
- Key R&D items have been identified:
 - ultra-radiation hard silicon sensors,
 - high precision timing detectors,
 - low power radiation hard optical links,
 - high granularity liquid argon calorimetry,
 - efficient software.
- If 100 TeV pp collider like FCC-hh is to be built, we can build detector that fully exploits the physics potential, as long as multiple identified R&D studies are carried out.

Special thanks to Werner Riegler and Martin Aleksa for their help with preparation of this talk.

Backup

 $^{2}/_{5}$

Dose for 30 ab^{-1}

 $^{3}/_{5}$

Effective pile-up

Anna Zaborowska

Trigger

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
bb cross-section	mb	0.5	0.5	1	2.5
bb rate	MHz	5	25	250	750
$b\overline{b} p_T^b > 30 \text{GeV/c cross-section}$	μb	1.6	1.6	4.3	28
$b\overline{b} p_T^b > 30 \mathrm{GeV/c}$ rate	MHz	0.02	0.08	1	8
Jets $p_T^{jet} > 50 \text{GeV/c}$ cross-section [331]	μb	21	21	56	300
Jets $p_T^{jet} > 50 \text{GeV/c}$ rate	MHz	0.2	1.1	14	90
$W^+ + W^-$ cross-section [333]	μb	0.2	0.2	0.4	1.3
$W^+ + W^-$ rate	kHz	2	10	100	390
$W^+ \rightarrow l + \nu$ cross-section [333]	nb	12	12	23	77
$W^+ \rightarrow l + v$ rate	kHz	0.12	0.6	5.8	23
$W^- \rightarrow l + \nu$ cross-section [333]	nb	9	9	18	63
$W^- \rightarrow l + \nu$ rate	kHz	0.1	0.5	4.5	19
Z cross-section [333]	nb	60	60	100	400
Z rate	kHz	0.6	3	25	120
$Z \rightarrow ll$ cross-section [333]	nb	2	2	4	14
$Z \rightarrow ll$ rate	kHz	0.02	0.1	1	4.2
tt cross-section [333]	nb	1	1	4	35
$t\overline{t}$ rate	kHz	0.01	0.05	1	11

Table 7.1: Key numbers relating the detector challenges at the different accelerators.

• 100 MHz of jets $p_T > 50 \text{ GeV}$

 $=\!100 \times \mathrm{HL-LHC}$

• $400 \,\mathrm{kHz}$ of $\mathrm{W^+W^-}$

 $=40 \times \text{HL-LHC}$

 $\bullet~120\,\rm kHz$ of Zs

 $=\!40\times\mathrm{HL-LHC}$

• 11 kHz of $t \overline{t}$

 $=\!200\times\mathrm{HL-LHC}$

