

Jet flavor identification for FCCee

[clearly very relevant for FCC-hh as well]

6th FCC-ee Physics Workshop January 2023

Franco Bedeschi, Michele Selvaggi, LG [EPJ C 82 646 (2022) link]

New members: Andrea Del Vecchio, Laurent Forthomme, Dolores Garcia

Physics motivation

- Flavour tagging essential for the e⁺e⁻ program, e.g.:
 - Higgs Sector:
 - (HL-)LHC can access 3rd gen. couplings and a few of 2nd generation
 - Future e⁺e⁻: Measure Higgs particle properties and interactions in challenging decay modes
 - E.g. cc, 1st gen quarks/fermions, gg [?]
 - Top quark physics [if E_{CM} sufficient]
 - Precise determination of top properties [mass, width, Yukawa]
 - QCD Physics
 - strong coupling (a_s), event shapes ..
 - modelling of hadronization, MC tuning, ...

Basics for jet flavor identification

jet

bottom/charm-tagging

- Large lifetime
- Displaced vertices/tracks
- Large track multiplicity
- non-isolated e/μ

strange-tagging

Strange $p_T = 45 \,\mathrm{GeV}$

Down $p_T = 45 \,\mathrm{GeV}$

- Large Kaon content
 - Charged Kaon as track:
 - K/pi separation
 - Neutral Kaons:
 - $\blacksquare K_{S} \rightarrow \pi\pi, K_{L}$

In the beginning: unclear what correlations existed among these

Ingredients for powerful jet taggers

- Detectors
 - Pixel/tracking systems: Little material, spatial resolution, precise track alignment
 - PID systems: timing capabilities, energy loss (gas/silicon)
- Algorithm design
 - optimal representation of jet/ optimal processing of detector signal & evt reconstruction
 - sophisticated algorithm design

Scope of this work:

Build a general framework for developing flavor tagging algorithms for future colliders [eg., e^+e^-]

- Fast detector simulation
 - Understand detector requirements/ optimize design
 - eg., vertexing and PID capabilities of the FCCee detectors
- Develop a versatile flavor tagger
 - Identify with high purity gluons, and ud, strange, charm, bottom quarks
 - Baseline: ParticleNet jet tagging algorithm
 - Results shown for FCCee & IDEA

Detectors characteristics in e⁺e⁻

- e⁺e⁻ colliders provide a very clean environment
 - Lower occupancy , no pileup
- Powerful detectors:
 - Pixel/tracking detectors tailored for b/c tagging
 - Higher granularity wrt to LHC detectors
 - $_{\odot}~$ ATLAS/CMS pixel size: O(~100x100 $\mu m^{2})$
 - Less tracking material

Numbers indicative concepts evolve rapidly

- ° ~0.4% X₀/layer CMS/ATLAS Pixel, ~0.15-0.2% X₀/layer in e⁺e⁻ detectors
- better impact parameter resolution/ less multiple scattering
- \circ CMS/ATLAS Pixel resolution: O(10) μm; ~2-5 μm in e⁺e⁻
- PID capabilities
 - dE/dx (Si tracker), dN/dx (Drift)
 - Time-of-flight [timing layer]

$\rightarrow e^+e^-$: Natural place to explore potential of jet tagging algorithms using advanced ML

 \rightarrow A step further: Consider reconstructing the full event in e⁺e⁻

Particle ID: Cluster counting (dN/dx)

- Count number of primary ionization clusters along track path
- Avoids large Landau flukes
- Requires high granularity
- module added in Delphes

#######################################
Cluster Counting

module ClusterCounting ClusterCounting {
add InputArray TrackSmearing/tracks
set OutputArray tracks
set Bz \$B
check that there are consistent with DCUCANT/DCUNANO parameters in TrackCovariance module
CHECK that these are consistent with Doncawi/Donwawo parameters in HackGovariance module
SEL KIIKA DUCIKIMAA
Set ZHIH SUCHZMAN
SEL ZINAX \$DUHZMAA
cas mix option:
0: Helium 90% - Isobutane 10%
1: Helium 100%
2: Argon 50% - Ethane 50%
3: Argon 100%
set GasOption 0
}

IDEA detector:

Particle ID: TOF

Good K/ π separation at low-momenta:

$$t_{\rm flight} \equiv t_{\rm F} - t_{\rm V} = \frac{L}{\beta} = \frac{L\sqrt{p^2 + m^2}}{p}$$

Assumption on vertex time [crucial for highly displaced K_s]

set TrackInputArray TimeSmearing/tracks

set VertexInputArray TruthVertexFinder/vertices

Time Of Flight Measurement

module TimeOfFlight TimeOfFlight {

1: assume vertex time tV = 0

set OutputArray tracks

set VertexTimeMode 2

Loukas Gouskos

#

FCC Physics Workshop, Krakow 2023

ParticleID: Combined

$3\sigma K/\pi$ separation for tracks w/ p<30 GeV

Designing a Graph-based tagger

- Jet representation: critical for powerful jet tagging algorithms
 - In theory: A spray of particles produced by the hadronization of q and g
 - Experimentally: A cone of reconstructed particles in the detector
- Reminder: Current and future experiments have / will have a <u>PF-based</u> event reconstruction
 - **Output:** mutually exclusive list of particles
 - Rich set of info/particle
 - Energy/momentum, position
 - Displacement, particle type
 - timing

o ...

[O(50) properties/particle]
x [~50-100 particles/jet]
~O(1000) inputs/jet

- Until recently: Jet taggers based on human-inspired higher-level observables
 - Inputs to cut-based or simple ML-based algorithms
- Move to **particle-based jet tagging**: i.e. exploit directly the PFcands
 - explore full potential of event reconstruction and detector granularity

Designing a Graph-based tagger (II)

- Jet: intrinsically <u>unordered set</u> of particles with relationships b/w the particles
 - i.e. human-chosen ordering not optimal
- A very active research area in ML community: **Point clouds**

ParticleNet(-ee)

- Jet representation: "Point Cloud" → "Particle Clouds"
 - Treat the jet as an <u>unordered set of particles</u>
- Algorithm design: Graph Neural Networks
 - Particle cloud represented as a graph
 - Each particle: **vertex** of the graph; Connections between particles: the **edges**
- Follow a hierarchical learning approach
 - First learn local structures \rightarrow then move to more global ones

H. Qu and LG <u>PRD 101 056019 (2020)</u> F. Bedeschi, M. Selvaggi, LG <u>EPJ C 82 646 (2022)</u>

ParticleNet(-ee)

- Jet representation: "Point Cloud" → "Particle Clouds"
 - Treat the jet as an <u>unordered set of particles</u>
- Network architecture: Graph Neural Networks
 - Particle cloud represented as a graph
 - Each particle: **vertex** of the graph; Connections between particles: the **edges**
- Follow a hierarchical learning approach
 - First learn local structures \rightarrow then move to more global ones

H. Qu and LG <u>PRD 101 056019 (2020)</u> F. Bedeschi, M. Selvaggi, LG <u>EPJ C 82 646 (2022)</u>

ParticleNet@FCCee: b/c tagging

ParticleNet@FCCee: s/g tagging

WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)		
Loose	90%	20%	40%	10%	1%		
Medium	80%	9%	20%	6%	0.4%		

WP	Eff (g)	Mistag (ud)	Mistag (c)	Mistag (b)		
Loose	90%	25%	7%	2.5%		
Medium	80%	15%	5%	2%		

Impact of detector configurations

Strange tagging [PID]

- dN/dx brings most of the gain additional gain w/ TOF (30ps)
 - TOF (3ps): marginal improvement
 - dN/dX + TOF(30ps) ~ perfect PID

- Additional pixel layer:
 - 2x improved BKG rejection in c-tagging
 - marginal/no improvement in b-tagging

Teaser from the analysis front

- Tools fully incorporated in FCCSW [details]
 - Example: $Z(\rightarrow vv)H(\rightarrow qq)$

Signal extraction: 2D fit

Loukas Gouskos

Robustness

- ParticleNet-ee trained using *Pythia 8* samples
 - tested on *Pythia 8* [solid lines]
 - tested on WZ-Pythia6 [dashed lines]

- Modest dependence on choice of generator
 - still many tricks in our bag to further reduce the dependence

Improving robustness

- Current development relies solely on MC
 - Full control of class definition, lot's of [MC] data [~2M jets/ jet flavor]
 - but: MC != Data; potentially lead to large uncertainties
 - NB: it's also not Full SIM ..
- Another route: Use data
 - [Obvious] advantage: much smaller syst unc.
- How: Tag-and-probe @ Z pole
 - First: Tag one of the two jets with high purity
 - e.g. by using a pretrained MC-based algo
 - Then: create a training sample using the 2nd jet (probe).

FCC-ee @ Zpole

Z→hadrons	~70%	0.7x10 ⁶ M
→ uu/cc	~12%/flavor	8.4x10 ⁴ M/ flavor
\rightarrow dd/ss/bb	~15%/flavor	1.1x10 ⁵ M/ flavor

Improving robustness (II)

- Take into account tagging performance [& mistag rates]
 - NB: Each class does not have to be 100% pure on specific jet flavor or have the same population

	Best case: b-tagging					"W					
WP	Eff (b)	Mistag (g)	Mistag (ud)	Mistag (c)		WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	2%	0.1%	2%		Loose	90%	20%	40%	10%	1%
Medium	80%	0.7%	<0.1%	0.3%	-	Medium	80%	9%	20%	6%	0.4%

Back-of-the-envelope: Training sample @ Zpole

- **bottom jets:** ~1x10⁵ M, **strange jets:** ~8.8x10⁴ M
 - all other jet flavors in between

Much larger training sample than what used for the MC-based training sample

Gluon tagging using data?

- Challenging... topic of discussion and brainstorming
 - For instance:

To be tested

Pushing the limits further

Use the k-nearest particles [k=8 for ParticleNet-EE]

- Fully connected graph
- Include per-particle-pair properties more directly

CERN

Pushing the limits further (II)

Summary

- Powerful jet flavour identification important for the e⁺e⁻ physics program
- Sophisticated jet tagging algorithms developed for e⁺e⁻ experiments
 - Striking improvement in tagging performance compared to previous tools
 - allows us to explore more of the detector and event reconstruction potential
 - Fully integrated in FCCSW [data preparation, training, validation, inference, analysis] and explored in FCCee physics analyses [More tomorrow]
 - Still room for improvement / other ideas to try
 - Strong interest by the theory and experiment communities
 - Why not testing them in actual e^+e^- data? \rightarrow LEP
 - 5 M Z bosons / experiment \rightarrow O(100K) training events / jet flavour
 - Great opportunity to commission these novel tools with real data
 - Bonus: Extract more physics out from LEP data [?]

Review of a decade [CMS]

• Enormous progress over the last few years:

e.g., b-tagging

[Disclaimer: Focus on CMS results; similar methods developed by the other LHC experiments]

Designing a Graph-based tagger (II)

- Improve jet representation: "Particle Sequences" → "Particle Clouds"
 - Treat the jet as an <u>unordered set of particles</u>
 - Rich set of information per particle
 - can be "viewed" as the coordinates of each particle in an abstract space

Improved Network architecture: Graph Neural Networks

- Particle cloud represented as a graph
 - Each particle: **vertex** of the graph
 - Connections between particles: the edges

• **Build** the graph:

- One approach: Fully connected Graph [but computationally very expensive]
- Another possibility: apply some criteria
 - e.g., *k*-Nearest Neighbors (*k*NN)

Designing a Graph-based tagger (III)

- Last step: Learn from the graphs
 - Follow a hierarchical learning approach:
 First learn local structures and then more global ones
- Convolution operations proven to be very powerful

Designing a Graph-based tagger (IV)

- Last step: Learn from the graphs
 - Follow a hierarchical learning approach:
 First learn local structures and then more global ones
- Convolution operations proven to be very powerful

EdgeConv: Convolution on point clouds

• Find the *k*-nearest neighbors of each point

Y. Wang et al.

EdgeConv: Convolution on point clouds

• Find the *k*-nearest neighbors of each point

- Design a permutation invariant **convolution operation**
 - Define an edge feature function \rightarrow aggregate edge features w/ a symmetric func.

EdgeConv: Convolution on point clouds

- Find the *k*-nearest neighbors of each point
- Design a permutation invariant convolution operation
 - Define an edge feature function \rightarrow aggregate edge features w/ a symmetric func.
- Update Graph (ie Dynamic Graph CNN, DGCNN): Using kNN in the feature space produced after EdgeConv
 - Can be viewed as a mapping from one particle cloud to another

Wang et al

ParticleNet for jet tagging

Based on EdgeConv and DGCNN

• but customized for the jet tagging task

EdgeConv block

Introduced:

features beyond spatial coordinates
residual connections
MLP conf. H. Qu and LG PRD 101 056019 (2020)

ParticleNet for jet tagging (II)

ParticleNet Architecture

- Based on EdgeConv and DGCNN
 - but customized for the jet tagging task

EdgeConv block

H. Qu and LG

PRD 101 056019 (2020)

Example of input features

