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n Flavour tagging essential for the e+e-

program, e.g.:
u Higgs Sector:

l (HL-)LHC can access 3rd gen. couplings and 
a few of 2nd generation

l Future e+e-: Measure Higgs particle properties 
and interactions in challenging decay modes

o E.g. cc, 1st gen quarks/fermions, gg [?]

u Top quark physics [if ECM sufficient]
l Precise determination of top properties

[mass, width, Yukawa]
u QCD Physics

l strong coupling (aS), event shapes ..
l modelling of hadronization, MC tuning, …

u ….

Physics motivation
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Basics for jet flavor identification
bottom/charm-tagging strange-tagging

[2003.09517]
Momentum 

weighted fraction:

● Large Kaon content
○ Charged Kaon as track:

■ K/pi separation
○ Neutral Kaons:

■ KS → 𝞹𝞹, KL

u Large lifetime
u Displaced vertices/tracks
u Large track multiplicity
u non-isolated e/μ
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In the beginning: unclear what correlations existed among these
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n Detectors
u Pixel/tracking systems: Little material, spatial resolution, precise track alignment
u PID systems: timing capabilities, energy loss (gas/silicon)

n Algorithm design
u optimal representation of jet/ optimal processing of detector signal & evt

reconstruction
u sophisticated algorithm design

n Scope of this work:
Build a general framework for developing flavor tagging algorithms for future 
colliders [eg., e+e-]
u Fast detector simulation

l Understand detector requirements/ optimize design
o eg., vertexing and PID capabilities of the FCCee detectors 

u Develop a versatile flavor tagger
l Identify with high purity gluons, and ud, strange, charm, bottom quarks
l Baseline: ParticleNet jet tagging algorithm

o Results shown for FCCee & IDEA

Ingredients for powerful jet taggers
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n e+e- colliders provide a very clean environment
u Lower occupancy , no pileup

n Powerful detectors: 
u Pixel/tracking detectors tailored for b/c tagging

l Higher granularity wrt to LHC detectors
o ATLAS/CMS pixel size: O(~100x100 μm2)

l Less tracking material
o ~0.4% X0/layer CMS/ATLAS Pixel, ~0.15-0.2% X0/layer in e+e- detectors
o better impact parameter resolution/ less multiple scattering
o CMS/ATLAS Pixel resolution: O(10) μm; ~2-5 μm in e+e-

u PID capabilities
l dE/dx (Si tracker), dN/dx (Drift)
l Time-of-flight [timing layer]

Detectors characteristics in e+e-

→ e+e-: Natural place to explore potential of jet tagging 
algorithms using advanced ML

→ A step further: Consider reconstructing the full event in e+e-
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Numbers indicative
concepts evolve rapidly
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n Count number of primary ionization
clusters along track path 

n Avoids large Landau flukes
n Requires high granularity
n module added in Delphes

Particle ID: Cluster counting (dN/dx)

IDEA detector:

90% He / 10 % Isobutane
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n Good Κ/π separation at low-momenta:

n Assumption on vertex time
[crucial for highly displaced Ks]

Particle ID: TOF
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ParticleID: Combined

3σ Κ/π separation for tracks w/ p<30 GeV
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n Jet representation: critical for powerful jet tagging algorithms
u In theory: A spray of particles produced by the hadronization of q and g
u Experimentally: A cone of reconstructed particles in the detector

n Reminder: Current and future experiments have / will have a PF-based event 
reconstruction
u Output: mutually exclusive list of particles

l Rich set of info/particle
o Energy/momentum, position
o Displacement, particle type
o timing
o …

n Until recently: Jet taggers based on human-inspired higher-level observables
u Inputs to cut-based or simple ML-based algorithms

n Move to particle-based jet tagging: i.e. exploit directly the PFcands
u explore full potential of event reconstruction and detector granularity
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Designing a Graph-based tagger

[O(50) properties/particle]
x [~50-100 particles/jet]
~O(1000) inputs/jet
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n Jet: intrinsically unordered set of particles with relationships b/w the particles
u i.e. human-chosen ordering not optimal

n A very active research area in ML community: Point clouds
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Designing a Graph-based tagger (II)

Ref.

“far”
“close”

Represent the object as 
a set of “points”

Group points based on 
similarity [usually using ML]

e.g. Identify the wings

https://arxiv.org/pdf/1801.07829.pdf
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n Jet representation:  “Point Cloud” à “Particle Clouds”
u Treat the jet as an unordered set of particles

n Algorithm design: Graph Neural Networks
u Particle cloud represented as a graph

l Each particle: vertex of the graph; Connections between particles: the edges

n Follow a hierarchical learning approach
u First learn local structures à then move to more global ones

ParticleNet(-ee)
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PF Cands
[up to 75/particle]

H. Qu and LG
PRD 101 056019 (2020)

F. Bedeschi, M. Selvaggi, LG
EPJ C 82 646 (2022)
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https://arxiv.org/abs/1902.08570
https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1
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n Jet representation:  “Point Cloud” à “Particle Clouds”
u Treat the jet as an unordered set of particles

n Network architecture: Graph Neural Networks
u Particle cloud represented as a graph

l Each particle: vertex of the graph; Connections between particles: the edges

n Follow a hierarchical learning approach
u First learn local structures à then move to more global ones

ParticleNet(-ee)
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gPF Cands
[up to 75/particle] Future: 

add taus, LLP, split gluon class …

Future: 
Include SVs
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particles

H. Qu and LG
PRD 101 056019 (2020)

F. Bedeschi, M. Selvaggi, LG
EPJ C 82 646 (2022)
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ParticleNet@FCCee: b/c tagging

WP Εff 
(b)

Mistag
(g)

Mistag
(ud)

Mistag
(c)

Loose 90% 2% 0.1% 2%

Medium 80% 0.7% <0.1% 0.3%

WP Εff 
(c)

Mistag
(g)

Mistag
(ud)

Mistag
(b)

Loose 90% 7% 7% 4%

Medium 80% 2% 0.8% 2%

b-tagging c-tagging

better

betterLHC
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ParticleNet@FCCee: s/g tagging
strange-tagging

WP Εff 
(s)

Mistag 
(g)

Mistag
(ud)

Mistag
(c)

Mistag
(b)

Loose 90% 20% 40% 10% 1%

Medium 80% 9% 20% 6% 0.4%

WP Εff 
(g)

Mistag
(ud)

Mistag
(c)

Mistag
(b)

Loose 90% 25% 7% 2.5%

Medium 80% 15% 5% 2%

better
better

gluon -tagging
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Impact of detector configurations
Strange tagging [PID] c-tagging [PIX layers]

Ideal from 
MC

better

better

n dN/dx brings most of the gain
additional gain w/ TOF (30ps)
u TOF (3ps): marginal improvement
u dN/dX + TOF(30ps) ~ perfect PID 

n Additional pixel layer:
u 2x improved BKG rejection 

in c-tagging
u marginal/no improvement 

in b-tagging
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n Tools fully incorporated in FCCSW [details]
u Example: Z(àvv)H(àqq)

Teaser from the analysis front
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ParticleNet-ee

Categorize events: bb, cc, ss, gg
Sub-categories w/ different S/B

m(rec)

Signal extraction: 2D fit

m(jj)

Results @ 5ab-1 

(syst: 5% BKG, 0.1% SIG)

Z(àvv)
H(àqq) bb cc ss gg

δμ/μ (%) 0.4 2.9 160 1.2

*|κS|<1.9

More on Friday:
G. Marchiori

https://indico.cern.ch/event/1221257/contributions/5170051/attachments/2561788/4415696/particle_net_fccana_v3.pdf
https://indico.cern.ch/event/1176398/timetable/
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n ParticleNet-ee trained using Pythia 8 samples
u tested on Pythia 8 [solid lines]
u tested on WZ-Pythia6 [dashed lines]

n Modest dependence on choice of generator
u still many tricks in our bag to further reduce the dependence

Robustness
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gluon -taggingb-tagging
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n Current development relies solely on MC
u Full control of class definition, lot’s of [MC] data [~2M jets/ jet flavor]

l but: MC != Data; potentially lead to large uncertainties
l NB: it’s also not Full SIM ..

n Another route: Use data
u [Obvious] advantage: much smaller syst unc.

n How: Tag-and-probe @ Z pole
u First: Tag one of the two jets with high purity

l e.g. by using a pretrained MC-based algo
u Then: create a training sample using the

2nd jet (probe).

Improving robustness
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Zàhadrons ~70% 0.7x106 M
à uu/cc ~12%/flavor 8.4x104 M/ flavor

à dd/ss/bb ~15%/flavor 1.1x105 M/ flavor

FCC-ee @ Zpole
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n Take into account tagging performance [& mistag rates]
u NB: Each class does not have to be 100% pure on specific jet flavor or have the 

same population

n Back-of-the-envelope: Training sample @ Zpole
u bottom jets: ~1x105 M, strange jets: ~8.8x104 M

l all other jet flavors in between

Improving robustness (II)
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Much larger training sample 
than what used for the 

MC-based training sample

Best case: b-tagging

WP Εff 
(b)

Mistag 
(g)

Mistag 
(ud)

Mistag 
(c)

Loose 90% 2% 0.1% 2%

Medium 80% 0.7% <0.1% 0.3%

“Worst” case: s-tagging

WP Εff 
(s)

Mistag 
(g)

Mistag 
(ud)

Mistag 
(c)

Mistag
(b)

Loose 90% 20% 40% 10% 1%

Medium 80% 9% 20% 6% 0.4%
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n Challenging… topic of discussion and brainstorming
u For instance:

Gluon tagging using data?
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To be tested

b-tagging: 
~90% eff.

b-tagging: 
~90% eff.

- 3rd jet is a gluon:
O(1-10%) depending on
momentum, angle

- Still more than enough for 
developing the gluon-
category
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Pushing the limits further
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SVi,6

SVi,7 SVi,9

ParticleNet-EE

Use the k-nearest particles
[k=8 for ParticleNet-EE]

ParticleTransformer

- Fully connected graph
- Include per-particle-pair properties 
more directly

based on:
H. Qu, C. Li, S. Qian

ICML 2022

https://arxiv.org/pdf/2202.03772.pdf
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Pushing the limits further (II)
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b-tagging c-tagging

s-tagging g-tagging



Loukas Gouskos

n Powerful jet flavour identification important for the e+e- physics program

n Sophisticated jet tagging algorithms developed for e+e- experiments 
u Striking improvement in tagging performance compared to previous tools

l allows us to explore more of the detector and event reconstruction potential
u Fully integrated in FCCSW [data preparation, training, validation, inference, 

analysis] and explored in FCCee physics analyses [More tomorrow]
u Still room for improvement / other ideas to try

l Strong interest by the theory and experiment communities

n Why not testing them in actual e+e- data? à LEP
u 5 M Z bosons / experiment à O(100K) training events / jet flavour
u Great opportunity to commission these novel tools with real data

l Bonus: Extract more physics out from LEP data [?]

Summary
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n Enormous progress over the last few years:

Review of a decade [CMS]

24

~50%
better

~15%

7-8x
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The early days:
Human – inspired

high-level variables
+

Cut-based selection

Run 1 Run 3Run 2

Early Run 2:
Human – inspired

high-level variables
+

Simple ML

The “Game changer”: 
Inputs: low-level info

[as particle sequences]
+

Advanced ML (CNN, RNN)

Pushing limits further:
Inputs: low-level info
[as unordered sets]

+
Graph Neural Nets

e.g., b-tagging

[Disclaimer: Focus on CMS results; similar methods developed by the other LHC experiments]
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n Improve jet representation:  “Particle Sequences” à “Particle Clouds”
u Treat the jet as an unordered set of particles
u Rich set of information per particle

l can be “viewed” as the coordinates of each particle in an abstract space

n Improved Network architecture: Graph Neural Networks
u Particle cloud represented as a graph

l Each particle: vertex of the graph
l Connections between particles: the edges

n Build the graph: 
u One approach: Fully connected Graph [but computationally very expensive]
u Another possibility: apply some criteria

l e.g., k-Nearest Neighbors (kNN)
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Designing a Graph-based tagger (II)

p1

p2

p6

p5

p3

p4
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n Last step: Learn from the graphs
u Follow a hierarchical learning approach:

First learn local structures and then more global ones

n Convolution operations proven to be very powerful
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Designing a Graph-based tagger (III)

Fixed grid: →
Convolution
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n Last step: Learn from the graphs
u Follow a hierarchical learning approach:

First learn local structures and then more global ones

n Convolution operations proven to be very powerful
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Designing a Graph-based tagger (IV)

Fixed grid:

point/particle 
cloud:

→
Convolution

… but not straightforward on 
point/particle clouds

- Irregular and unordered sets
- Requires a permutation 

invariant convolutional operation
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n Find the k-nearest neighbors of each point
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EdgeConv: Convolution on point clouds

k-Nearest Neighbors

pi,1

pi,2

pi

pi,5

pi,3

pi,4

Y. Wang et al.

https://arxiv.org/abs/1801.07829


Loukas Gouskos

n Find the k-nearest neighbors of each point
n Design a permutation invariant convolution operation

u Define an edge feature function à aggregate edge features w/ a symmetric func.

n In a nutshell:
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EdgeConv: Convolution on point clouds

k-Nearest Neighbors Convolution operation

pi,1

pi,2

pi

pi,5

pi,3

pi,4 pi,1

pi,2

pi

pi,5

pi,3

pi,4

ParticleNet:
hΘ: MLP [shared across edges]

: average over all k-NN

Y. Wang et al.

https://arxiv.org/abs/1801.07829
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n Find the k-nearest neighbors of each point
n Design a permutation invariant convolution operation

u Define an edge feature function à aggregate edge features w/ a symmetric func.
n Update Graph (ie Dynamic Graph CNN, DGCNN):

Using kNN in the feature space produced after EdgeConv
u Can be viewed as a mapping from one particle cloud to another

n In a nutshell:
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EdgeConv: Convolution on point clouds

k-Nearest Neighbors Convolution operation Update Graph

pi,1

pi,2

pi

pi,5

pi,3

pi,4 pi,1

pi,2

pi

pi,5

pi,3

pi,4 p’
i,1

p’
i,2

p’
i

p’
i,5

p’
i,3

p’
i,4

ParticleNet:
hΘ: MLP [shared across edges]

: average over all k-NN

Y. Wang et al.

https://arxiv.org/abs/1801.07829
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n Based on EdgeConv and DGCNN 
u but customized for the jet tagging task
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ParticleNet for jet tagging

EdgeConv block
Introduced: 
- features beyond 

spatial coordinates
- residual connections
- MLP conf.

H. Qu and LG
PRD 101 056019 (2020)

https://arxiv.org/abs/1902.08570
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n Based on EdgeConv and DGCNN 
u but customized for the jet tagging task
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ParticleNet for jet tagging (II)

EdgeConv block ParticleNet Architecture

From local 
to more
global 

structures

particles 
distributed 

in η-φ
Introduced: 
- features beyond 

spatial coordinates
- residual connections
- MLP conf.

H. Qu and LG
PRD 101 056019 (2020)

https://arxiv.org/abs/1902.08570
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Example of input features
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Constituent relative energy Impact parameter (d0)


