Universality Tests in τ Decays at FCC-ee

Lukas Allwicher

Physik-Institut, Universität Zürich

6th FCC Physics Workshop 22-27 January 2023 Krakow

- From LHC, it would seem that there is a mass gap between the electroweak scale $v \sim 100$ GeV and the scale of new physics: $\Lambda \gtrsim 1$ TeV \rightarrow precision frontier
- We would like to have TeV-scale NP (hierarchy problem)
- But many flavour experiments (K- \bar{K} mixing, ...) set stronger bounds: $\Lambda > 10^5$ TeV!
- This tells us that the flavour structure of NP must be very non-generic
- TeV-scale NP is still possible if it's coupled mainly to the third generation
- Interesting also in view of the Yukawa coupling structure

 $\Rightarrow \tau \text{ leptons are a very interesting indirect probe of NP,} \\ \text{complementary to e.g. } B \text{ and top physics}$

In the SM:

$$\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Higgs+Yukawa}$$

- LFU: e, μ, τ are all the same $(\gamma, W, Z) \to \text{expect } \Gamma_e = \Gamma_\mu = \Gamma_\tau$
- LFUV: $m_e \neq m_\mu \neq m_\tau$ $y_\tau \sim 10^{-2} \Rightarrow$ very small breaking, only in interactions with H

Beyond the SM:

• New Physics may distinguish between different lepton species

hints of LFUV in
$$b \rightarrow c\ell\nu$$

B-Anomalies: update

Neutral currents

(see talk by B. Allanach)

$$R_{X_s} = \frac{\mathcal{B}(B \to X_s \mu^+ \mu^-)}{\mathcal{B}(B \to X_s e^+ e^-)}$$

Before 20/12/22:

After 20/12/22:

$4.3\sigma \rightarrow 0.2\sigma!!$

cf. R. Quagliani, CERN seminar 20/12/22

B-Anomalies: update

Neutral currents

(see talk by B. Allanach)

- Angular analyses in $b \rightarrow s\mu\mu$ transitions still show an interesting deviation from the SM
- However, theory prediction less under control (charm loops)
- Could be due to lepton flavour universal NP in the vector operator C_9

$$\mathcal{O}_9 = (\bar{b}\gamma^\mu P_L s)(\bar{\ell}\gamma_\mu \ell)$$

cf. R. Quagliani, CERN seminar 20/12/22

B-Anomalies: update

Charged currents

$$R_{X_c} = \frac{\mathcal{B}(B \to X_c \tau \nu)}{\mathcal{B}(B \to X_c \ell \nu)} \qquad \ell = e, \mu$$

LHCb update October '22:

- $\tau/\mu, e$ universality
- Expect first measurement by Belle-II in spring

B-Anomalies and τ decays

• Consider the LH contact interaction

$$\mathcal{L} \supset \frac{1}{\Lambda^2} [C^{(3)}_{\ell q}]_{\alpha \beta i j} (\bar{\ell}_{\alpha} \gamma_{\mu} \sigma^I \ell_{\beta}) (\bar{q}_i \gamma^{\mu} \sigma^I q_j)$$

• $\delta R_{D^{(*)}} \sim V_{cb} [\mathcal{C}_{\ell q}^{(3)}]_{\tau \tau 33} + V_{cs} [\mathcal{C}_{\ell q}^{(3)}]_{\tau \tau 23}$ \rightarrow modify only couplings to τs \rightarrow down-aligned basis (avoid B_s mixing constraints)

Deviations in $b \to c\tau\nu$ imply a modification of $\tau \to \ell\nu\bar{\nu}$ decays (modification of W coupling to τ)

- $N \sim 10^{12}~Z\text{-boson pairs} \Rightarrow 1.7 \times 10^{11}~Z \rightarrow \tau^+\tau^-$ decays
- Better τ reconstruction due to large boost
- Clean environment

[Dam 1811.09408]

Observable	Present	FCC-ee	FCC-ee
	value $\pm \text{ error}$	stat.	syst.
$m_{\tau} \; ({\rm MeV})$	1776.86 ± 0.12	0.004	0.1
$\mathcal{B}(\tau \to e \bar{\nu} \nu) \ (\%)$	17.82 ± 0.05	0.0001	0.003
$\mathcal{B}(\tau \to \mu \bar{\nu} \nu) \ (\%)$	17.39 ± 0.05	0.0001	0.003
$ au_{ au}$ (fs)	290.3 ± 0.5	0.001	0.04

Universality tests in τ decays: current status

[Pich 1310 7922]

Leptonic LFU ratios:

	[1 0000 10101.00
	$\Gamma_{\tau \to \mu} / \Gamma_{\tau \to e}$
$ g_{\mu}/g_{e} $	1.0018(14)
	$\Gamma_{\tau \to e} / \Gamma_{\mu \to e}$
$ g_{ au}/g_{\mu} $	1.0011(15)
	$\Gamma_{\tau \to \mu} / \Gamma_{\mu \to e}$
$ g_{ au}/g_e $	1.0030(15)

- FCC-ee expected to go below $10^{-4}!$
- QED corrections known to $\mathcal{O}(\alpha^2) \lesssim 10^{-5}$

see talk by G. Isidori at FCC Flavour Physics Workshop, CERN 13.09.22

•
$$H, W^{\pm}, Z, t$$
 integrated out

• $SU(3)_{QCD} \times U(1)_{QED}$ invariant

$$\mathcal{L}_{\text{LEFT}} = -\frac{2}{v^2} \left[L_{\nu e}^{V,LL} \right]^{\alpha\beta\gamma\delta} \left(\bar{\nu}_L^{\alpha} \gamma_{\mu} \nu_L^{\beta} \right) \left(\bar{e}_L^{\gamma} \gamma^{\mu} e_L^{\delta} \right) \quad \left[L_{\nu e}^{V,LL} \right]_{SM}^{\alpha\beta\beta\alpha} = 1$$
$$R_{\beta\alpha} \equiv \frac{\Gamma(\ell_{\beta} \to \ell_{\alpha} \nu \bar{\nu})}{\Gamma_{\text{SM}}(\ell_{\beta} \to \ell_{\alpha} \nu \bar{\nu})} \equiv 1 + \delta R_{\beta\alpha}$$
$$\approx 1 + 2 \operatorname{Re}[L_{\nu e}^{V,LL}]_{\alpha\beta\beta\alpha}^{\text{NP}}$$

EFT for τ decays

Leading-Log result:

$$\begin{bmatrix} L_{\nu e}^{V,LL} \end{bmatrix}_{\substack{NP,LL \\ \nu e}}^{\alpha\beta\beta\alpha} = -2 \sum_{\substack{\gamma = \alpha,\beta} \\ \ell \\ \gamma \neq \alpha} \begin{bmatrix} C_{H\ell}^{(3)} \end{bmatrix}_{\gamma\gamma} (m_t) = -\frac{y_t^2 N_c}{8\pi^2} \log \frac{\Lambda_{NP}^2}{m_t^2} \sum_{\substack{\gamma = \alpha,\beta} \\ \gamma = \alpha,\beta} \begin{bmatrix} C_{\ell q}^{(3)} \end{bmatrix}^{\gamma\gamma33} O_{H\ell}^{(3)} = (\bar{\ell}\gamma^{\mu}\sigma^I\ell)(H^{\dagger}i\overleftarrow{D}_{\mu}^{I}H)$$

Leading Log result

$$\begin{bmatrix} O_{H\ell}^{(3)} \end{bmatrix}^{\alpha\beta} = \left(\bar{\ell}^{\alpha}\gamma_{\mu}\sigma^{I}\ell^{\beta}\right) \left(H^{\dagger}i\overleftarrow{D^{\mu}}\sigma^{I}H\right)$$

$$g_{\tau}/g_{\mu}|^{2} \simeq 1 - 4\sum_{\gamma=\alpha,\beta} \left[C_{H\ell}^{(3)}\right]_{\gamma\gamma}(m_{t}) = 1 - \frac{y_{t}^{2}N_{c}}{4\pi^{2}}\log\frac{\Lambda_{\mathrm{NP}}^{2}}{m_{t}^{2}}\sum_{\gamma=\alpha,\beta} \left[C_{\ell q}^{(3)}\right]_{\gamma\gamma33}$$

$$[LA, \ Isidori, \ Selimović \ 2109.03833]$$

$$FCC-ee$$

- Expect decrease of g_{τ}
- FCC-ee will be able to clarify the situation

Example: the U_1 leptoquark, $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$

- Generates both $bc\tau\nu$ and $bs\ell\ell$ interactions
- LH couplings:

- Needs to be coupled mainly to third generation
- $bs\mu\mu \sim \beta_L^{b\mu}\beta_L^{s\mu}$ \rightarrow rescaling couplings by a factor ~ 2 restores compatibility with LFU tests
- Large $bs\tau\tau$ coupling gives universal contribution to C_9

Quark-Lepton unification: 4321 model(s)

 $\mathrm{SU}(4)_3 \times \mathrm{SU}(3)_{1+2} \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_X$

Non universal gauge interactions \rightarrow NP coupled mainly to 3rd generation

[1512.01560, 1708.08450, 1709.00692, 1712.01638, 1712.06844, ...]

New gauge fields:
$$U_1$$
, G' , Z'
 $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$

SM fermions:

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$
ψ_L	4	1	2	0
ψ_R^+	4	1	1	1/2
ψ_R^-	4	1	1	-1/2
$q_L^{\prime i}$	1	3	2	1/6
u_R^i	1	3	1	2/3
d_R^i	1	3	1	-1/3
$\ell_L^{\prime i}$	1	1	2	-1/2
e_R^i	1	1	1	-1

Additional fermions (vector-like) \rightarrow mixing with light generations

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$
χ_L	4	1	2	0
Q_R	1	3	2	1/6
L_R	1	1	2	-1/2

 $\mathcal{L} \supset M_q \bar{Q}_R q_L^2 + M_\ell \bar{L}_R \ell_L^2$

 $H \sim (\mathbf{1}, \mathbf{1}, \mathbf{2}, 1/2)$

1-loop computations in the UV-complete theory

$$\begin{split} [C_{H\ell}^{(3)}]_{\tau\tau}(\mu) &= -\frac{1}{16\pi^2} \frac{N_{\rm c} C_U}{2} \Big[|\beta_L^{b\tau}|^2 |y_t|^2 \left(1 + \log \frac{\mu^2}{m_U^2} \right) \\ &+ c_Q 2 {\rm Re}(\beta_L^{b\tau^*} \beta_L^{Q\tau} Y_+^* y_t) B_0(x_Q) \\ C_U &= \frac{g_U v^2}{4m_U^2} + c_Q^2 |\beta_L^{Q\tau}|^2 (|Y_+|^2 + |Y_-|^2) F(x_Q, x_Q^R) \Big] \end{split}$$

Full model results for τ LFU ratios

- Including finite pieces and the effect of the vector-like states can change the leading-log result
- The tension can only be slightly decreased
- Vector-like quarks also enter in other observables: $m_W, Z \to t_R \bar{t}_R$

Adding neutrino masses

- Quark-lepton unification predicts $m_t \sim m_{\nu_{\tau}}$
- Inverse see-saw mechanism:

$$\mathcal{L} = -\lambda_R \bar{S}_R^c \Omega_1^T \psi_R^+ + \frac{1}{2} \mu \bar{S}_R^c S_R$$
$$m_R \sim \lambda_R \langle \Omega_1 \rangle \pm \mu \qquad m_{\nu_\tau} \sim \frac{y_t v}{m_R} \mu$$

$B_s \to \tau \tau$ and $B \to K \tau \tau$

- Decay rates strongly enhanced in the U_1 model
- Expect ~ 1000 reconstructed $\bar{B}^0 \to K^{*0} \tau \tau$ events at FCC-ee

[Kamenik, Monteil, Semkiv, Vale Silva 1705.11106]

$$\mathcal{O}_{LL}^c = (\bar{c}_L \gamma_\mu b_L)(\bar{\tau}_L \gamma^\mu \nu_L) \qquad \mathcal{O}_{LR}^c = (\bar{c}_L b_R)(\bar{\tau}_R \nu_L)$$

$B_s \to \tau \tau$ and $B \to K \tau \tau$

- Decay rates strongly enhanced in the U_1 model
- Expect ~ 1000 reconstructed $\bar{B}^0 \to K^{*0} \tau \tau$ events at FCC-ee

[Kamenik, Monteil, Semkiv, Vale Silva 1705.11106]

= FCC-ee

EWPO: m_W and $Z \rightarrow \nu \nu$

[LA, Isidori, Lizana, Selimović, Stefanek WIP]

- τ leptons, being third generation fermions, are particularly interesting to look at with precision experiments
- FCC-ee is an ideal machine to do so
- LFU tests are a very clean probe of NP
- If deviations from the SM come from TeV-scale NP, not only τs will be affected

 \rightarrow define models and study correlations between observables at different energy scales

Thank you!

$au o \mu \phi \,\, {f and} \,\, au \, \overline{ o \mu \gamma, \, B_s o au \mu}$

$\tau \to \mu \phi \text{ and } \tau \to \mu \gamma, \ B_s \to \tau \mu$

[Cornella, Faroughy, Fuentes-Martín, Isidori, Neubert 2103.16558]

τ LFV decays

Decay	Present bound	FCC-ee sensitivity
$\tau \to \mu \gamma$	4.4×10^{-8}	2×10^{-9}
$ au ightarrow 3 \mu$	2.1×10^{-8}	10^{-10}

τ LFV decays

Decay	Present bound	FCC-ee sensitivity
$\tau ightarrow \mu \gamma$	4.4×10^{-8}	2×10^{-9}
$ au ightarrow 3 \mu$	2.1×10^{-8}	10^{-10}

Z LFV decays

Decay	Present bound	FCC-ee sensitivity
$Z \to \mu e$	0.75×10^{-6}	$10^{-10} - 10^{-8}$
$Z \to \tau \mu$	12×10^{-6}	10^{-9}
$Z \to \tau e$	9.8×10^{-6}	10^{-9}

Z LFV decays

Decay	Present bound	FCC-ee sensitivity
$Z \to \mu e$	0.75×10^{-6}	$10^{-10} - 10^{-8}$
$Z \to \tau \mu$	12×10^{-6}	10^{-9}
$Z \to \tau e$	9.8×10^{-6}	10^{-9}

Tau related observables

Some EW pole observables

