

(with a focus on discussion of systematics control and evaluation)

Marina Cobal, <u>Giovanni Guerrieri</u>, Hamzeh Khanpour, Giancarlo Panizzo, Michele Pinamonti, Leonardo Toffolin

Outline

- 'Short' introduction: A^{0,b}_{FB}, motivations, status
- Systematic uncertainties
- Future plans and conclusions

INFN (

A^{0,b}_{FB}

Goal

- Precise measurement of the forward-backward asymmetry of $b\bar{b}$ in $e^+e^- \rightarrow Z \rightarrow b\bar{b}$
- $>2\sigma$ deviation between LEP combination and EW fits
- Ideal benchmark measurement for FCC-ee $@m_Z$

Measurement

- $A^{0,b}_{FB}$ can be extracted from the distribution of $\cos \theta(b)$
- experimental distinction between b and b needed
 ⇒ quark charge determination

$$\frac{d\sigma}{d\cos\theta} = \sigma_{_{b\bar{b}}}^{\rm tot} \left(\frac{3}{8}(1+\cos^2\theta) + (A^b_{_{\rm FB}})_{_{\rm obs}}(1-2\chi_B)\cos\theta\right)$$

e+

A^{0,b}_{FB}: b-jet charge

Two classes of methods:

• Jet-charge based studies

- charge of jet obtained as weighted sum of charges of constituent tracks
- can be applied to all jets \Rightarrow maximal efficiency
- relatively low purity
- strong dependence on jet shape and hadronization
- Lepton-charge based studies
 - charge of b inferred from charge of e or $\boldsymbol{\mu}$ in B-hadron semileptonic decay
 - relatively low efficiency (restricted to semileptonic decays)
 - better purity
 - highly sensitive to B-hadron decay modelling

A^{0,b}_{FB}: LEP measurements

	Measurement:	$(A^{0,b}_{\scriptscriptstyle \rm FB}) \pm \delta({\rm stat}) \pm \delta({\rm syst})$	relative uncertainties		
	Experiment		stat.	QCD syst.	total syst.
	Lepton-charge based:				
Eur.Phys.J.C24	ALEPH (2002)	$0.1003 \pm 0.0038 \pm 0.0017$	3.8%	0.7%	1.7%
Eur.Phys.J.C34	DELPHI (2004–05)	$0.1025 \pm 0.0051 \pm 0.0024$	5.0%	1.2%	2.3%
Phys.Lett.B448	L3 $(1992–99)$	$0.1001 \pm 0.0060 \pm 0.0035$	6.0%	1.8%	3.5%
Phys.Lett.B577	OPAL (2003)	$0.0977 \pm 0.0038 \pm 0.0018$	3.9%	1.1%	1.8%
	Jet-charge based:				
Eur.Phys.J.C22	ALEPH (2001)	$0.1010 \pm 0.0025 \pm 0.0012$	2.5%	0.7%	1.2%
Eur.Phys.J.C40	DELPHI (2005)	$0.0978 \pm 0.0030 \pm 0.0015$	3.1%	0.7%	1.5%
Phys.Lett.B439	L3 (1998)	$0.0948 \pm 0.0101 \pm 0.0056$	10.6%	4.3%	5.9%
Phys.Lett.B546	OPAL (1997,2002)	$0.0994 \pm 0.0034 \pm 0.0018$	3.4%	0.7%	1.8%
	Combination	$0.0992 \pm 0.0015 \pm 0.0007$	1.5%	0.5%	0.7%

stat. syst.

Analysis strategy

Workflow

- 1. Build reco-level observable exploiting:
 - Jet direction
 - Jet-charge (determined with one of the two methods)
- 2. Perform unfolding from reco-level to parton-level
- 3. Extract $A^{0,b}_{FB}$ from the unfolded distribution

Framework

- Using both HEP-FCC/FCCAnalyses framework and standalone Madgraph+Delphes
- Investigating usage of thrust axis, jets with <u>different</u> <u>algorithms</u>, leptons...

Considering for the future: secondary vertex reconstruction, exclusive B-hadron decays, interplay with b-tagging...

Jet-charge study

- Based on private MadGraph+Delphes simulation (with IDEA card)
- Durham jet algorithm used
- Simplified b-tagging (flat 80% eff., 10%/1% c/lightmis-tagging)
- Jet charge built with weighted sum of charges of tracks (as saved by Delphes)
 - $\Delta R < 0.4$ from jet axis
 - weight = p_1 (track) w.r.t. jet axis

Event Selection

- \geq 2 b-tagged jets
- \geq 1 jet with charge > 0
- \geq 1 jet with charge < 0

×10³

entries

100

80

60

40

20

20

 charpe>0 weighted charge: charpe<0

-0.6

Signal

-0.8

veighted cf

Background, c-cbar

-0.4

-0.2

-0.2

0.2

0.4

0.6

0.8

cos θ bbar-je

_cos θ(b-jet)

0.6

0.8

cos θ

Jet-charge study

- Response matrix and efficiency correction vector built from 6M $b\bar{b}$ events.
- Unfolding with simple Matrix inversion, 10x10 matrix used.

8

0.2

0.1054 0.105420.10544 0.1056 0.10548 0.1055 0.10552 0.10554 0.10556 0.10558 0.10558 0.10556 0.10558 0.1058

0.4

0.6 0.8

cos θ_{guari}

Lepton-charge study

- Based on private HEP-FCC/FCCAnalyses (with centrally produced samples)
- IDEA detector concept
- Jets reconstructed by Durham algorithm

Event Selection

- Investigating optimal selection to minimize contribution from "charge flips" due to
 b → c → ℓ decays:
 - Leading lepton selection
 - ℓ with $\Delta R(jet) < 0.4$ (non-isolate) used to tag jets
 - $p(\ell) > 10 \text{ GeV cut applied}$
 - Investigating cuts on other quantities (e.g. p_T^{rel} (ℓ_j jet))

Events normalised to unit are:

Lepton-charge study

- As before, statistical uncertainty of the order of:
 - 150 ab⁻¹: ± 0.004%

$$A_{FB}^b = 0.091100 \pm 0.000004 (\text{stat.})$$

Systematic uncertainties

We know that statistical uncertainty will not be an issue

- LEP combination has ~equal stat and syst contributions
- We expect ~10⁵ times more statistics at FCC-ee \Rightarrow ~300 times smaller stat. uncertainty

Systematic uncertainties expected to be dominant

- Modelling b-fragmentation
 - Affecting B-hadron kinematics
- Final-state QCD radiation effects
 - Affecting jet shapes, distribution of charge, B-hadron kinematics...
- b-tagging efficiency:
 - Uncertainty on mis-tag rate affecting background prediction
 - $p_{\rm T}$ and η dependency of b-tagging eff. for signal

Systematic uncertainties

Jet-charge based analysis

• b-fragmentation: ± 0.2%

changing r_b value in Lund-Bowler fragmentation function in Pythia

• $\alpha_{\text{S}}^{\text{FSR}}$: ± 6.4% Indirectly changing $\alpha_{\text{s}}^{\text{FSR}}$ value by a factor of $\sqrt{2}$

Total syst. uncertainty of: ~6.4%

Lepton-charge based analysis

- b-fragmentation: ± 0.3%
- α_{s}^{FSR} : ± 3.7%

Total syst. uncertainty of: ~3.7%

 $f(z) = \frac{1}{z^{1+br_b m_b^2}} (1-z)^a \exp(-bm_{\rm T}^2/z)$

These uncertainties are <u>NOT yet</u> meant to be comparable with a LEP result

Systematic uncertainties

How to reduce the systematic uncertainty?

Systematic uncertainties: clustering

Jet Clusering algorithms: Jade vs Durham

Jade

Jade
$$A_{FB}^b = 0.0911 \pm 0.0039$$

*Exclusive algorithms are expected to be a good all-round default.

Systematic uncertainties: QCD FSR

Parton Shower Models: Dire Showers arXiv:1506.05057v2

• Leading order evolution kernels, and NLO corrections to collinear evolution from NLO DGLAP kernels.

Pythia
$$A^b_{FB} = 0.0911 \pm 0.0034$$

New samples are generated and analyzed

Dire

 $A^b_{FB} = 0.0927 \pm 0.0012$

Systematic uncertainties: b-tagging

Flavour tagging efficiencies

 $A^b_{FB} = 0.0927 \pm 0.0012$ Before: flat 80% b-tagging efficiency: no fake b-jets

 $A^b_{FB} = 0.0927 \pm 0.0009$

After: Updates in FCCAnalysis framework **mistag_c**, **mistag_l**, **mistag_g***

b-tag	c-tag		
ɛ _{b,} ɛ _c , ɛ _l , ɛ _g	ɛ _{b,} ɛ _c , ɛ _l , ɛ _g		
80 / 0.4 / 0.05 / 0.7	2.0 / 80 / 0.9 / 2.5		

*Franco Bedeschi, Loukas Gouskos, Michele Selvaggi, *Jet FlavourTagging for Future Colliders with Fast Simulation*, **arXiv:2202.03285**. <u>Higgs Performance at FCC-ee, FCC Week 2022</u>

Ongoing studies and future plans

- Need to complete the two studies based on simple methods for b-quark charge determination, before investigating more complex methods
 - Currently implementing jet-charge study with HEP-FCC/FCCAnalyses.
 - Refining systematics evaluation.
 - Have a detailed comparison with one/more of the LEP results.

Systematic uncertainties

- Refining current systematics evaluation.
- Including additional systematics
 - tracking efficiency & resolution
 - jet energy uncertainties expected to be negligible

Planning usage of advanced techniques

- General machine-learning method for b-quark charge determination
- Possibly in a joint effort with flavour-tagging algorithm development studies

Conclusions

Carrying on two strategies in parallel

• Already starting to converge on a combined result

Studying systematics uncertainties

- Are jets effectively the best way to measure $A^{0,b}_{FB}$?
- Already clear that parton shower systematics can kill the precision
 - \Rightarrow ad-hoc calibrations / auxiliary measurements needed

Staying up to date

- Embedding new analysis techniques
- Exploiting and benchmarking new features in the software releases.
- Looking forward to the FCC week in London to present new results.

Thank you!

6th FCC Physics workshop - Krakow – 23-27 January 2023

Backup

6th FCC Physics workshop - Krakow – 23-27 January 2023

Tuning $\alpha_{\text{S}}^{\text{FSR}}$

The default pT^2 renormalization scale is multiplied by this prefactor.

For QCD this is equivalent to a change of Lambda² in the opposite direction, i.e. to a change of alpha_strong(M_Z²) (except that flavour thresholds remain at fixed scales).

TimeShower:renormMultFac=0.707 && TimeShower:factorMultFac=0.707

TimeShower:renormMultFac=1.414 && TimeShower:factorMultFac=1.414

Parton Shower Models: Dire Showers arXiv:1506.05057v2

• Defining which <u>higher order corrections</u> are applied to the parton shower splitting functions used for <u>timelike</u> (i.e. final state) evolution

mode DireTimes:kernelOrder (default = 1; minimum = -1; maximum = 4)

• Defining which <u>higher order corrections</u> are applied to the parton shower splitting functions used for <u>spacelike</u> (i.e. initial state) evolution

mode DireSpace:kernelOrder (default = 1; minimum = -1; maximum = 4)

By choosing the Dire Shower Model

• Leading order evolution kernels, and NLO corrections to collinear evolution from NLO DGLAP kernels.