Higgs mass and ZH cross-section

Gregorio Bernardi¹, Jan Eysermans², Ang Ll¹

On behalf of the ZH analysis team

FCC Physics Workshop Jan. 27th, 2023 Krakow

1, APC-Paris, Université Paris Cité, CNRS/IN2P3

2, MIT

Université Paris Cité

Outline

Omega Motivation and introduction

Higgs-self coupling

Basic selection for Higgs mass and Cross-section

Higgs mass measurement

Signal and background modelling

Higgs mass statistical analysis

 $\boldsymbol{\theta}$ categorisation

Systematics

Cross-section measurement

BDT-based selection

Motivation

Goal: precise measurements of ZH cross section and Higgs mass

- Current best result LHC: $m_{H} = 125.38 \pm 0.14 (\pm 0.12) \text{ GeV}$
- At FCC-ee, m_H and σ_{ZH} accuracy will reach a few MeV and 0.5%, respectively
 - → Measure g_{HZZ} , Higgs width ($\Gamma_{\!H}$) and other Higgs couplings

 \succ Signal: $e^+e^- \rightarrow ZH \rightarrow l\bar{l} + X$

See Jorge de Blas's talk for Higgs couplings fit

ZH optimal event rate is at $\sqrt{s} \sim 240 \text{ GeV}$: $\sigma \sim 200 \text{ fb} \sim 10^6 \text{ events}$ (@ $L = 5 ab^{-1}$) Data at $\sqrt{s} \sim 365 \text{ GeV}$, 1.8×10⁵ ZH and 0.45×10⁵ WW-fusions (~30%) (@ $L = 1.5 ab^{-1}$)

FCC-ee will run below the requirement for HHZ production (above 365 GeV) No direct access to λ

Large ZH (@240 GeV) and VBF-H (@365 GeV) cross-section:

With intervention of λ at loop-level: Sensitive to the cross-section measurement shown above

Talk by <u>Louis Portales</u> on FCC-France-Italy Workshop

27/01/2023 Ang LI--APC-Paris

See Jorge de Blas's talk

Recoil technique

> Z boson decay channels: $\mu^+\mu^-$, e^+e^- , $q\overline{q}$

> Assuming:

- 0.1% luminosity uncertainty
- \circ 1% selection efficiency uncertainty
- 2.8 MeV uncertainty on center-of-mass energy
- $\circ m_H = 125.38 \pm -0.14$ GeV (latest CMS result)
- Higgs decay BRs $(H \rightarrow b\overline{b})$ fixed to SM values

Reaching $\delta_{\kappa_{\lambda}} \sim 30\%$

- Combining with HL-LHC expected constraints
- Sensitivity driven by Z(qq)H category
- Adding ZH@365GeV resolves degenerated minima
- \circ Negligible impact from VBF

Signal, Background Monte-Carlo simulation, Event Selection

Monte-Carlo simulation:

- $\sqrt{s} = 240 \text{ GeV}$
- Luminosity: $L = 5 ab^{-1}$
- Initial State Radiation (ISR) and Final State Radiation (FSR) on
- Beam Energy Spread (BES) set to nominal BES: ± 0.185% = ± 222 MeV (Spring 2021: 0.165% = ± 198MeV)
- IDEA detector; detector response modelled with Delphes
- Winter 2023 for mass determination (Spring 2021 for cross-section studies)
 Since winter2023, we have well defined electrons in the collection, with energy smearing 1.2 w.r.t. muons

Event-Selection (Baseline):

- 1. Select at least 2 leptons:
 - \circ Momentum $p_l > 20 \text{ GeV}$
 - Opposite sign
 - One lepton required to be isolated
- 2. Pair the leptons in case more than 2 leptons found:
 - Take pair that minimizes

$$\chi^2 = 0.6 \times (m_{ll} - m_Z)^2 + 0.4 \times (m_{recoil} - m_H)^2$$

- $\circ~$ Pairing efficiency ~ 100 %
- 3. $m_{l^+l^-} \in [86, 96] \text{ GeV}$
- 4. $p_{l^+l^-} \in [20, 70]$ GeV
- 5. $|\cos\theta missing| < 0.98$
 - \circ mainly suppresses Z/ γ , (only for mass analysis)
- 6. $m_{recoil} \in [120, 140] \text{ GeV} \rightarrow \text{used in fit}$

Signals:

1. $Z(l^+l^-)H$, (Whizard)

Backgrounds:

- 1. ZZ(inclusive), (Pythia)
- 2. W^+W^- , (Pythia)
- 3. $Z \rightarrow l^+ l^-$, (Whizard)
- 4. *eeZ*, (Whizard)
- 5. $\gamma \gamma \rightarrow l^+ l^-$ (Whizard)

Choice of suitable PDF: 2 Crystal-Ball with Gaussian core

Fit done for several mass samples (125.00 ± 50 MeV, ± 100 MeV) Parameterize mean and other components as function of m_H

- Backgrounds modelled as polynomial (3th order)
- \succ Signal and background model injected in Combine, m_H as POI

Statistic-Only

Likelihood scan to extract mass uncertainty

- \circ Muon channel 6.0 MeV
- Electron channel 7.5 MeV
- Electron channel worse with factor 1.25 w.r.t. muons, driven by resolution scaling with factor 1.2 (residuals due to background)
- Combined uncertainty 4.6 MeV (stat. only)
 - $\,\circ\,\,$ Sensitivity driven by muon channel, electrons gain ~ 25%

Lepton momentum resolution degraded in forward region due

to higher material budget

FUTURE CIRCULAR

COLLIDER

- $\circ~$ Split leptons in central and forward regions
 - 1. Central: $0.8 < \theta < 2.34$,
 - 2. Forward: the rest
- $\circ~$ The combination of two leptons have in total 3 categories:
 - 1. Two leptons in central region,
 - 2. Two leptons in forward region,
 - 3. One lepton in central region + One lepton in forward region
- o Perform statistical fit in all categories combined

Likelihood scan to extract mass uncertainty

- Total combined uncertainty 3.8 MeV (stat. only)
- \circ Additional gain of ~ 20% due to categorization

Systematics

Beam energy spread uncertainty (nominal BES: ± 0.185% = ± 222 MeV)

- O Uncertainty driven by accelerator instrumentation:
 bunch length measurement up to 0.3 mm accuracy or better → 6% BES uncertainty
- \circ Data-driven BES constraining possible \rightarrow estimated to be 1% BES uncertainty

Center-of-mass: +/- 2 MeV

- \sqrt{S} parameter in the recoil mass definition → uncertainty induces linear shift the recoil distribution
- Precision ~ 2 MeV at 240 GeV using radiative return events $Z \rightarrow ll$ or $Z \rightarrow qq$

Lepton momentum scale: relative scale uncertainty variation of 1e-5

- \circ Directly affects m_{ll} , hence shift in recoil mass
- Statistical potential to measure lepton scale ~ 1e-6, but NMR probes so far limited to yield 1e-5 uncertainty
- Currently 1e-5 same for muons and electrons, but independent nuisances

Combine likelihood scans to extract the mass uncertainty

- Total uncertainty of 4.3 MeV (~ 10% worsening w.r.t. stat. only)
- Include ISR systematics via KKMC reweighting technique

Motivation to use a BDT-based selection

XGBoost

* Samples

- "Spring2021 training" for training and validation of the BDT model (will move to Winter2023 once the training samples are ready)
- "Spring2021" for final analysis

Number of events for BDT training:

- All signals passed the baseline_nocosthetamiss selection
- Total Number of backgrounds = Total Number of Signals
- > Number of events of each process is proportional to their cross-section X cut efficiency (from <u>fcc-event page</u>)
- > 1/2 of events for training
- > 1/2 of events for testing

***** FCC-APC-Input-Variables :

- 1. Z_leptonic_p (muon pair transvers momentum)
- 2. Z_leptonic_theta (muon pair theta)
- 3. Z_leptonic_m (muon pair invariant mass)
- 4. Muon_acoplanarity (muon pair acoplanarity)
- 5. Muon_leading_p
- 6. Muon_subleading_p
- 7. Muon_leading_theta
- 8. Muon_acolinearity (muon pair acolinearity)
- 9. Muon_subleading_theta

BDT distribution

>No obvious overtraining:

BDT model has similar performance on signal (background) training and validation samples at high (low) BDT score
 Signal is concentrated at high BDT score,

BDT Cut and Model independency

FCCAnalyses: FCC-ee Simulation (Delphes)

> MVA02: BDT score > 0.2:

Background is shaped by the BDT at low m_{recoil}
 Model-independency verified within statistical uncertainties

Cross-section fitting results

Cuts	μ	$\delta_{\sigma_{ZH}}$ (68% CL)
Baseline	1	-0.0095/+0.0095
Baseline, without $ \cos heta_{missing} $ cut	1.00001	-0.0143/+0.0143
Baseline, without $ \cos \theta_{missing} $ cut, with BDT score > 0.2	1	-0.0128/+0.0128

> Removing the $\cos \theta_{missing}$ cut, the uncertainty on cross-section measurement:

0.95%→1.43% (increased 50%)

Applying BDT score > 0.2, the uncertainty on cross-section measurement:

1.43%→1.28% (decreased 10%)

- ➤ Including electrons will roughly improve with √2, leading to a combined uncertainty of ~ 1%
- This motivates performing the BDT study for electrons as well

Statistic-Only Binned fit

Summary and outlook

Summary:

□Higgs mass measurement:

- $\,\circ\,$ Moved to Winter2023
- $\circ\,$ Included electrons
- $_{\odot}$ Categorization in θ

The uncertainty on Higgs mass yields 4.3 MeV (statistic plus systematics)

□Cross section measurement:

 $\circ \cos heta_{missing}$ replaced by BDT to reject the larger background

 $\,\circ\,$ Model-independency is conserved

Cross-section measurement yields 1.28% uncertainty (statistic only)

10% improvement from the BDT

Outlook:

Cross-section measurement move to Winter2023, include systematics and electrons
 Include ISR systematics via KKMC reweighting technique

Backup

FUTURE CIRCULAR COLLIDER

27/01/2023 Ang LI--APC-Paris

	mumuH	ZZ	WWmumu	ZII	eeZ
#Events	724264	84259	67204	544613	28186

Hyperparameters	Value
n_estimators	350
learning_rate	0.20
max_depth	3
subsample	0.5
gamma	3
min_child_weight	10
max_delta_step	0
colsample_bytree	0.5

Hyperparameters	Value
n_estimators	350
learning_rate	0.20
max_depth	3
subsample	0.5
gamma	3
min_child_weight	10
max_delta_step	0
colsample_bytree	0.5

Cross-section fitting results

Statistic-Only Binned fit

Cuts	mu	(68% CL)
Baseline	1	-0.0095/+0.0095
Baseline_nocosthemiss	1.00001	-0.0143/+0.0143
Baseline_nocosthemiss_MVA01	1.00001	-0.0128/+0.0128
Baseline_nocosthemiss_MVA02	1	-0.0128/+0.0128
Baseline_nocosthemiss_MVA03	1	-0.0129/+0.0130
Baseline_nocosthemiss_MVA04	1	-0.0133/+0.0133

Selections and Categorisations

- Recoil technique
- > Z boson decay channels: $\mu^+\mu^-$, e^+e^- , $q\overline{q}$
- Categorization tuned for the two energy points (240 GeV & 365 GeV)
 - Z(qq)H divided into 6 'flavor-tag' categories
 - \circ @240 GeV: only ZH production considered
 - @365 GeV: considering ZH + eeH(bb) + vvH(bb)
 - $\circ~$ Using $m_{l^+l^-}$ (m_{miss}) in VBF categories

Talk by <u>Louis Portales</u>on FCC-France-Italy Workshop

> Selections:

$Z(l^+l^-)H$

- 1. Opposite Sign l^+l^- pair
- 2. $86 < m_{l^+l^-} < 96 \text{ GeV}$
- 3. $20 < p_T^{l^+l^-} < 70 \text{ GeV} (>70 \text{ GeV} @365 \text{ GeV})$
- 4. $|\cos\theta missing| < 0.98$

27/01/2023 Ang LI--APC-Paris

$Z(q\bar{q})H$

- 1. Anti-kt jets (R=0.5)
- 2. 6 Flavor categories (bb,cc,ll,bc,bl,cl) \rightarrow 86<mqq<96 GeV
- 3. $p_T^{jet} > 20 \text{ GeV}$
- 4. $|\cos\theta missing| < 0.98$
- 5. BDTs used for selection:
 - $\circ~$ one per flavor category
 - \circ 17 input variables characterising the $q \bar{q}$ system