Higgs & Top interplay (@FCC) Eleni Vryonidou

FCC Physics Workshop Krakow 23-27/1/2023

Why are top and Higgs friends? The top has the largest Yukawa coupling: $m_t = \frac{y_t}{\sqrt{2}} = 173 \text{GeV} \longrightarrow y_t = 0.99$

The top quark is the only "natural" quark

Top and Higgs play a special role in the stability of the Universe

Eleni Vryonidou

FCC Physics Workshop, Krakow

Large corrections for the Higgs mass

The (little) hierarchy problem

Motivation for BSM with special connection to top: top partners, modified Yukawas etc

Looking for the (un)known

"SM" Higgs measurements

Expect the FCC to push this frontier even further

Exotic searches for top partners

Essig, Meade, Ramani, Zhong arXiv:1707.03399

Eleni Vryonidou

FCC Physics Workshop, Krakow

Direct evidence of the top Yukawa coupling SMEFT interpretations

Essig, Meade, Ramani, Zhong arXiv:1707.03399

Eleni Vryonidou

FCC Physics Workshop, Krakow

Direct evidence of the top Yukawa coupling SMEFT interpretations

Essig, Meade, Ramani, Zhong arXiv:1707.03399

Eleni Vryonidou

FCC Physics Workshop, Krakow

Direct evidence of the top Yukawa coupling SMEFT interpretations

SMEFT: What is it all about?

Effective Field Theory reveals high energy physics through precise measurements at low energy.

Eleni Vryonidou

eory
$$\mathcal{L}_{SM}(\phi) + \mathcal{L}_{dim6}(\phi) + \dots$$

SMEFT@LHC

Data

Top-pair production W-helicities, asymmetry

Dataset	\sqrt{s},\mathcal{L}	Info	Observables	$n_{\rm dat}$	Re
ATLAS_tt_8TeV_1jets	8 TeV, 20.3 fb^{-1}	lepton+jets	$d\sigma/dm_{t\bar{t}}$	7	[46]
CMS_tt_8TeV_ljets	$8 { m TeV}, 20.3 { m fb}^{-1}$	lepton+jets	$1/\sigma d\sigma/dy_{t\bar{t}}$	10	[47]
CMS_tt2D_8TeV_dilep	$8 { m TeV}, 20.3 { m fb}^{-1}$	dileptons	$\bigg \ 1/\sigma d^2\sigma/dy_{t\bar{t}}dm_{t\bar{t}}$	16	[48
ATLAS_tt_8TeV_dilep (*)	$8 { m TeV}$, 20.3 fb ⁻¹	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[54
CMS_tt_13TeV_ljets_2015	$13 { m ~TeV}, 2.3 { m ~fb^{-1}}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	8	[51]
CMS_tt_13TeV_dilep_2015	$13 \text{ TeV}, 2.1 \text{ fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[53
CMS_tt_13TeV_ljets_2016	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	10	[52]
CMS_tt_13TeV_dilep_2016 (*)	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	7	[56
ATLAS_tt_13TeV_ljets_2016 (*)	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	9	[55
ATLAS_WhelF_8TeV	$8 { m TeV}$, 20.3 fb ⁻¹	W hel. fract	F_0, F_L, F_R	3	[49]
CMS_WhelF_8TeV	$8 { m TeV}$, 20.3 fb ⁻¹	W hel. fract	F_0, F_L, F_R	3	[50]
ATLAS_CMS_tt_AC_8TeV (*)	$8 \text{ TeV}, 20.3 \text{ fb}^{-1}$	charge asymmetry	A _C	6	[57
ATLAS_tt_AC_13TeV (*)	$8 { m TeV}$, 20.3 fb ⁻¹	charge asymmetry	A_C	5	[58

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_t_tch_8TeV_inc	$8 { m TeV}, 19.7 { m fb}^{-1}$	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[83]
ATLAS_t_tch_8TeV	$8 \text{ TeV}, 20.2 \text{ fb}^{-1}$	t-channel	$d\sigma(tq)/dy_t$	4	[85]
CMS_t_tch_8TeV_dif	$8 { m TeV}, 19.7 { m fb}^{-1}$	t-channel	$d\sigma/d y^{(t+\bar{t})} $	6	[84]
CMS_t_sch_8TeV	$8 \text{ TeV}, 19.7 \text{ fb}^{-1}$	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[87]
ATLAS_t_sch_8TeV	$8 { m TeV}$, 20.3 fb ⁻¹	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[86]
ATLAS_t_tch_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[88]
CMS_t_tch_13TeV_inc	$13 \text{ TeV}, 2.2 \text{ fb}^{-1}$	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[90]
CMS_t_tch_13TeV_dif	$13 \text{ TeV}, 2.3 \text{ fb}^{-1}$	t-channel	$d\sigma/d y^{(t+\bar{t})} $	4	[89]
CMS_t_tch_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	t-channel	$d\sigma/d y^{(t)} $	5	[91]

		1		1	
Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
ATLAS_tW_8TeV_inc	8 TeV, 20.2 fb^{-1}	inclusive (dilepton)	$\sigma_{ m tot}(tW)$	1	[95]
ATLAS_tW_inc_slep_8TeV (*)	8 TeV, 20.2 fb^{-1}	inclusive (single lepton)	$\sigma_{ m tot}(tW)$	1	[101]
CMS_tW_8TeV_inc	8 TeV, 19.7 fb^{-1}	inclusive	$\sigma_{\rm tot}(tW)$	1	[96]
ATLAS_tW_inc_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm tot}(tW)$	1	[97]
CMS_tW_13TeV_inc	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm tot}(tW)$	1	[98]
ATLAS_tZ_13TeV_inc	$13 \text{ TeV}, 36.1 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm tot}(tZq)$	1	[100]
ATLAS_tZ_13TeV_run2_inc (*)	$13 \text{ TeV}, 139.1 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[102]
CMS_tZ_13TeV_inc	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm fid}(Wb\ell^+\ell^-q)$	1	[99]
CMS_tZ_13TeV_2016_inc (*)	13 TeV, 77.4 fb^{-1}	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[103]

Dataset	$\sqrt{s}, \; \mathcal{L}$	Info	Observables	N_{dat}	Ref
LEP2_WW_diff (*)	$[182, 296] { m GeV}$	LEP-2 comb	$d^2\sigma(WW)/dE_{ m cm}d\cos\theta_W$	40	[128]
ATLAS_WZ_13TeV_2016 (*)	13 TeV, 36.1 fb^{-1}	fully leptonic	$d\sigma^{ m (fid)}/dm_T^{WZ}$	6	[129]
ATLAS_WW_13TeV_2016 (*)	$13 \text{ TeV}, 36.1 \text{ fb}^{-1}$	fully leptonic	$d\sigma^{({ m fid})}/dm_{e\mu}$	13	[130]
CMS_WZ_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	fully leptonic	$d\sigma^{({\rm fid})}/dp_T^Z$	11	[131]

4 tops, ttbb, toppair associated production

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_ttbb_13TeV	$13 \text{ TeV}, 2.3 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[70]
CMS_ttbb_13TeV_2016 (*)	13 TeV, 35.9 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[79]
ATLAS_ttbb_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[78]
CMS_tttt_13TeV	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[71]
CMS_tttt_13TeV_run2 (*)	13 TeV, 137 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[76]
ATLAS_tttt_13TeV_run2 (*)	$13 { m TeV}, 137 { m fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[77]
CMS_ttZ_8TeV	$8 \text{ TeV}, 19.5 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[72]
CMS_ttZ_13TeV	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[73]
CMS_ttZ_ptZ_13TeV (*)	$13 \text{ TeV}, 77.5 \text{ fb}^{-1}$	total xsec	$d\sigma(t\bar{t}Z)/dp_T^Z$	4	[81]
ATLAS_ttZ_8TeV	8 TeV, 20.3 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[74]
ATLAS_ttZ_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[75]
ATLAS_ttZ_13TeV_2016 (*)	$13 \text{ TeV}, 36 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[80]
CMS_ttW_8_TeV	8 TeV, 19.5 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[72]
CMS_ttW_13TeV	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[73]
ATLAS_ttW_8TeV	8 TeV, 20.3 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[74]
ATLAS_ttW_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[75]
ATLAS_ttW_13TeV_2016 (*)	$13 \text{ TeV}, 36 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[80]

Eleni Vryonidou

Single top t-, s-channel

tW, tZ

Diboson

FCC Physics Workshop, Krakow

Dataset	$\sqrt{s}, \; \mathcal{L}$	Info	Observables	$n_{\rm dat}$	Ref.
ATLAS_CMS_SSinc_RunI (*)	7+8 TeV, 20 fb ⁻¹	Incl. μ_i^f	ggF , VBF, Vh , $t\bar{t}h$ $h \rightarrow \gamma\gamma$, VV , $\tau\tau$, $b\bar{b}$	20	[114]
ATLAS_SSinc_RunI (*)	$8 { m TeV}, 20 { m fb}^{-1}$	Incl. μ^f_i	$h ightarrow Z\gamma, \mu\mu$	2	[115]
ATLAS_SSinc_RunII (*)	$13 \text{ TeV}, 80 \text{ fb}^{-1}$	Incl. μ_i^f	$gg {\rm F}, {\rm VBF}, Vh, t\bar{t}h$ $h\to \gamma\gamma, WW, ZZ, \tau\tau, b\bar{b}$	16	[116]
CMS_SSinc_RunII (*)	$13 \text{ TeV}, 36.9 \text{ fb}^{-1}$	Incl. μ_i^f	$ \left \begin{array}{l} gg \mathrm{F}, \mathrm{VBF}, Wh, Zh t\bar{t}h \\ h \rightarrow \gamma\gamma, WW, ZZ, \tau\tau, b\bar{b} \end{array} \right. $	24	[117]

Higgs signal strengths

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_H_13TeV_2015 (*)	13 TeV, 35.9 fb $^{-1}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$d\sigma/dp_T^h$	9	[121]
ATLAS_ggF_13TeV_2015 (*)	$13 \text{ TeV}, 36.1 \text{ fb}^{-1}$	$ \begin{array}{ c c c c c } ggF, VBF, Vh, t\bar{t}h \\ \\ h \rightarrow ZZ (\rightarrow 4l) \end{array} $	$d\sigma/dp_T^h$	9	[122]
ATLAS_Vh_hbb_13TeV (*)	$13 \text{ TeV}, 79.8 \text{ fb}^{-1}$	Wh, Zh	$d\sigma^{ m (fid)}/dp_T^W$ $d\sigma^{ m (fid)}/dp_T^Z$	2 3	[123]
ATLAS_ggF_ZZ_13TeV (*)	$13 { m TeV}, 79.8 { m fb}^{-1}$	$ggF, h \rightarrow ZZ$	$\sigma_{\rm ggF}(p_T^h, N_{\rm jets})$	6	[116]
CMS_ggF_aa_13TeV (*)	$13 { m TeV}, 77.4 { m fb}^{-1}$	$ggF, h o \gamma\gamma$	$\sigma_{\rm ggF}(p_T^h, N_{\rm jets})$	6	[124]

Higgs differential

SMEFT@LHC

Data

Top-pair production W-helicities, asymmetry

Dataset	\sqrt{s},\mathcal{L}	Info	Observables	$n_{\rm dat}$	Re
ATLAS_tt_8TeV_1jets	8 TeV, 20.3 fb^{-1}	lepton+jets	$d\sigma/dm_{t\bar{t}}$	7	[46]
CMS_tt_8TeV_ljets	$8 { m TeV}, 20.3 { m fb}^{-1}$	lepton+jets	$1/\sigma d\sigma/dy_{t\bar{t}}$	10	[47]
CMS_tt2D_8TeV_dilep	$8 { m TeV}, 20.3 { m fb}^{-1}$	dileptons	$\bigg \ 1/\sigma d^2\sigma/dy_{t\bar{t}}dm_{t\bar{t}}$	16	[48
ATLAS_tt_8TeV_dilep (*)	$8 { m TeV}$, 20.3 fb ⁻¹	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[54
CMS_tt_13TeV_ljets_2015	$13 { m ~TeV}, 2.3 { m ~fb^{-1}}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	8	[51]
CMS_tt_13TeV_dilep_2015	$13 \text{ TeV}, 2.1 \text{ fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[53
CMS_tt_13TeV_ljets_2016	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	10	[52]
CMS_tt_13TeV_dilep_2016 (*)	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	7	[56
ATLAS_tt_13TeV_ljets_2016 (*)	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	9	[55
ATLAS_WhelF_8TeV	$8 { m TeV}$, 20.3 fb ⁻¹	W hel. fract	F_0, F_L, F_R	3	[49]
CMS_WhelF_8TeV	$8 { m TeV}$, 20.3 fb ⁻¹	W hel. fract	F_0, F_L, F_R	3	[50]
ATLAS_CMS_tt_AC_8TeV (*)	$8 \text{ TeV}, 20.3 \text{ fb}^{-1}$	charge asymmetry	A _C	6	[57
ATLAS_tt_AC_13TeV (*)	$8 { m TeV}$, 20.3 fb ⁻¹	charge asymmetry	A_C	5	[58

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_t_tch_8TeV_inc	$8 { m TeV}, 19.7 { m fb}^{-1}$	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[83]
ATLAS_t_tch_8TeV	$8 { m TeV}, 20.2 { m fb}^{-1}$	t-channel	$d\sigma(tq)/dy_t$	4	[85]
CMS_t_tch_8TeV_dif	$8 { m TeV}, 19.7 { m fb}^{-1}$	t-channel	$d\sigma/d y^{(t+\bar{t})} $	6	[84]
CMS_t_sch_8TeV	$8 { m TeV}, 19.7 { m fb}^{-1}$	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[87]
ATLAS_t_sch_8TeV	$8 { m TeV}$, 20.3 fb ⁻¹	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[86]
ATLAS_t_tch_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	<i>t</i> -channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[88]
CMS_t_tch_13TeV_inc	$13 \text{ TeV}, 2.2 \text{ fb}^{-1}$	<i>t</i> -channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[90]
CMS_t_tch_13TeV_dif	$13 \text{ TeV}, 2.3 \text{ fb}^{-1}$	t-channel	$d\sigma/d y^{(t+\bar{t})} $	4	[89]
CMS_t_tch_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	t-channel	$d\sigma/d y^{(t)} $	5	[91]

	1	1	1	1	
Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
ATLAS_tW_8TeV_inc	8 TeV, 20.2 fb ⁻¹	inclusive (dilepton)	$\sigma_{ m tot}(tW)$	1	[95]
ATLAS_tW_inc_slep_8TeV (*) 8 TeV, 20.2 fb^{-1}	inclusive (single lepton)	$\sigma_{ m tot}(tW)$	1	[101]
CMS_tW_8TeV_inc	8 TeV, 19.7 fb ⁻¹	inclusive	$\sigma_{\rm tot}(tW)$	1	[96]
ATLAS_tW_inc_13TeV	13 TeV, 3.2 fb^{-1}	inclusive	$\sigma_{\rm tot}(tW)$	1	[97]
CMS_tW_13TeV_inc	13 TeV, 35.9 fb ⁻¹	inclusive	$\sigma_{\rm tot}(tW)$	1	[98]
ATLAS_tZ_13TeV_inc	13 TeV, 36.1 fb ⁻¹	inclusive	$\sigma_{\rm tot}(tZq)$	1	[100]
ATLAS_tZ_13TeV_run2_inc	(*) $ $ 13 TeV, 139.1 fb ⁻¹	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[102]
CMS_tZ_13TeV_inc	13 TeV, 35.9 fb ⁻¹	inclusive	$\sigma_{\rm fid}(Wb\ell^+\ell^-q)$	1	[99]
CMS_tZ_13TeV_2016_inc (*) $ $ 13 TeV, 77.4 fb ⁻¹	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[103]

Dataset	$\sqrt{s}, \; \mathcal{L}$	Info	Observables	$N_{\rm dat}$	Ref
LEP2_WW_diff (*)	$[182, 296] { m GeV}$	LEP-2 comb	$d^2\sigma(WW)/dE_{ m cm}d\cos\theta_W$	40	[128]
ATLAS_WZ_13TeV_2016 (*)	$13 \text{ TeV}, 36.1 \text{ fb}^{-1}$	fully leptonic	$d\sigma^{ m (fid)}/dm_T^{WZ}$	6	[129]
ATLAS_WW_13TeV_2016 (*)	13 TeV, 36.1 fb^{-1}	fully leptonic	$d\sigma^{({ m fid})}/dm_{e\mu}$	13	[130]
CMS_WZ_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	fully leptonic	$d\sigma^{(\rm fid)}/dp_T^Z$	11	[131]

4 tops, ttbb, toppair associated production

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_ttbb_13TeV	$13 \text{ TeV}, 2.3 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[70]
CMS_ttbb_13TeV_2016 (*)	13 TeV, 35.9 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[79]
ATLAS_ttbb_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[78]
CMS_tttt_13TeV	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[71]
CMS_tttt_13TeV_run2 (*)	13 TeV, 137 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[76]
ATLAS_tttt_13TeV_run2 (*)	$13 { m TeV}, 137 { m fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[77]
CMS_ttZ_8TeV	$8 \text{ TeV}, 19.5 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[72]
CMS_ttZ_13TeV	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[73]
CMS_ttZ_ptZ_13TeV (*)	$13 \text{ TeV}, 77.5 \text{ fb}^{-1}$	total xsec	$d\sigma(t\bar{t}Z)/dp_T^Z$	4	[81]
ATLAS_ttZ_8TeV	8 TeV, 20.3 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[74]
ATLAS_ttZ_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[75]
ATLAS_ttZ_13TeV_2016 (*)	$13 \text{ TeV}, 36 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[80]
CMS_ttW_8_TeV	8 TeV, 19.5 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[72]
CMS_ttW_13TeV	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[73]
ATLAS_ttW_8TeV	8 TeV, 20.3 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[74]
ATLAS_ttW_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[75]
ATLAS_ttW_13TeV_2016 (*)	$13 \text{ TeV}, 36 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[80]

Eleni Vryonidou

FCC Physics Workshop, Krakow

Single top t-, s-channel

tW, tZ

Diboson

Dataset	$\sqrt{s}, \ \mathcal{L}$	Info	Observables	$n_{ m dat}$	Ref.
ATLAS_CMS_SSinc_RunI (*)	7+8 TeV, 20 fb ⁻¹	Incl. μ_i^f	$ggF, VBF, Vh, t\bar{t}h$ $h \rightarrow \gamma\gamma, VV, \tau\tau, b\bar{b}$	20	[114]
ATLAS_SSinc_RunI (*)	$8 { m TeV}, 20 { m fb}^{-1}$	Incl. μ_i^f	$h ightarrow Z\gamma, \mu\mu$	2	[115]
ATLAS_SSinc_RunII (*)	$13 \text{ TeV}, 80 \text{ fb}^{-1}$	Incl. μ_i^f	$gg {\rm F}, {\rm VBF}, Vh, t\bar{t}h$ $h \to \gamma\gamma, WW, ZZ, \tau\tau, b\bar{b}$	16	[116]
CMS_SSinc_RunII (*)	$13 \text{ TeV}, 36.9 \text{ fb}^{-1}$	Incl. μ_i^f	$ \left \begin{array}{l} gg {\rm F}, {\rm VBF}, Wh, Zh \ t\bar{t}h \\ h \rightarrow \gamma\gamma, WW, ZZ, \tau\tau, b\bar{b} \end{array} \right. $	24	[117]

Higgs signal strengths

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_H_13TeV_2015 (*)	13 TeV, 35.9 fb $^{-1}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$d\sigma/dp_T^h$	9	[121]
ATLAS_ggF_13TeV_2015 (*)	13 TeV, 36.1 fb $^{-1}$	$ \begin{array}{ c c c c c } ggF, VBF, Vh, t\bar{t}h \\ h \rightarrow ZZ (\rightarrow 4l) \end{array} $	$d\sigma/dp_T^h$	9	[122]
ATLAS_Vh_hbb_13TeV (*)	$13 \text{ TeV}, 79.8 \text{ fb}^{-1}$	Wh, Zh	$d\sigma^{ m (fid)}/dp_T^W$ $d\sigma^{ m (fid)}/dp_T^Z$	2 3	[123]
ATLAS_ggF_ZZ_13TeV (*)	$13 { m TeV}, 79.8 { m fb}^{-1}$	$ggF, h \rightarrow ZZ$	$\sigma_{\rm ggF}(p_T^h,N_{\rm jets})$	6	[116]
CMS_ggF_aa_13TeV (*)	$13 { m TeV}, 77.4 { m fb}^{-1}$	$ggF, h o \gamma\gamma$	$\sigma_{\rm ggF}(p_T^h,N_{\rm jets})$	6	[124]

Higgs differential

Category	Processes	$n_{ m dat}$
Top quark production	$t\bar{t}$ (inclusive)	94
	$tar{t}Z,tar{t}W$	14
	single top (inclusive)	27
	tZ, tW	9
	$tar{t}tar{t},tar{t}bar{b}$	6
	Total	150
Higgs production and decay	Run I signal strengths	22
	Run II signal strengths	40
	Run II, differential distributions & STXS	35
	Total	97
Diboson production	LEP-2	40
	LHC	30
	Total	70
Baseline dataset	Total	317

LHC global EFT fit: marginalised (1)

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779 FCC Physics Workshop, Krakow

Eleni Vryonidou

All coefficients allowed to be non-zero

For weakly coupled theories Λ bound below the TeV scale: **EFT Validity???**

Strongly coupled Weakly coupled

LHC global EFT fit: marginalised (2)

* Higher Orders in $1/\Lambda^4$

* squared dim-6 contributions

Posterior distributions

Magnitude of

Significant impact for most operators in particular 4-fermion operators

LHC global EFT fit: marginalised (2)

* Higher Orders in $1/\Lambda^4$

* squared dim-6 contributions

Posterior distributions

Some operators remain unconstrained: Need more data/better probes/new colliders!

Significant impact for most operators in particular 4-fermion operators

What can we hope for the FCC?

Cleaner environment **Precision frontier**

can make very precise measurements

Messier environment

Energy frontier:

can push energy probed to 10s of TeV

Eleni Vryonidou

FCC Physics Workshop, Krakow

Which operators:

4-lepton, 2-fermion, pure gauge, Higgs-gauge, top operators at 365 GeV

4-quark, 2-fermion, pure gauge, Higgs-gauge, top operators, 4-heavy operators

on December 17, 2019 at Durham

Eleni Vryonidou

FCC Physics Workshop, Krakow

FCC(-e	ee)	
326	Machine	Pol. (e^{-}, e^{+})
	HL-LHC	Unpolarised
	ILC	$(\mp 80\%, \pm 30\%)$
		$(\mp 80\%, \pm 20\%)$
	CLIC	$(\pm 80\%, 0\%)$
.) 0.03764	FCC-ee	Unpolarised
	CEPC	Unpolarised
dipoles	MuC	Unpolarised

MuC Unpolarised 3 TeV 3 ab⁻¹ 10 TeV 10 ab⁻¹ More details in Jorge's talk

Energy

 $14 \, \mathrm{TeV}$

 $250 \,\,\mathrm{GeV}$

 $350 \,\,\mathrm{GeV}$

 $500 \,\,\mathrm{GeV}$

 $1 {
m TeV}$

380 GeV

 $1.5 \,\,\mathrm{TeV}$

3 TeV

Z-pole

 $2m_W$

 $240 \,\,\mathrm{GeV}$

 $350 \,\,\mathrm{GeV}$

365 GeV

Z-pole

 $2m_W$

 $240 \,\,\mathrm{GeV}$

 $350 \,\,\mathrm{GeV}$

360 GeV

 $125 \,\,\mathrm{GeV}$

Luminosity

 3 ab^{-1}

 2 ab^{-1}

 0.2 ab^{-1}

 4 ab^{-1}

 8 ab^{-1}

 1 ab^{-1}

 2.5 ab^{-1}

 5 ab^{-1}

 150 ab^{-1}

 10 ab^{-1}

 5 ab^{-1}

 0.2 ab^{-1}

 1.5 ab^{-1}

 100 ab^{-1}

 6 ab^{-1}

 20 ab^{-1}

 0.2 ab^{-1}

 1 ab^{-1}

 0.02 ab^{-1}

What we can learn: Higgs+EW

Snowmass study: de Blas, Du, Grojean, Gu, Miralles, Peskin, Tian, Vos, EV arXiv: 2206.08326

10⁻² 10⁻³ aTGCs

Busy plot: compare grey (HL-LHC) with yellow (FCC-ee) and dark yellow (FCC-ee+365)

- Typically FCC-ee improves bounds by more than an order of magnitude compared to HL
- This is true for both Higgs couplings and Vff couplings
 - Improvement is not significant for Zy, yy, µµ (dominated by HL-LHC)

What we can learn: Top sector

Goals of the Snowmass study:

- Explore HL-LHC prospects
- Explore future collider prospects
- Do this in some some unified fit setup, with reasonable uncertainty assumptions

Durieux, Gutierez, Mantani, Miralles, Mirrales, Moreno, Poncelet, EV, Vos arXiv:2205.02140

Eleni Vryonidou

FCC Physics Workshop, Krakow

$$\begin{split} C_{\varphi Q}^{-} &= C_{\varphi Q}^{1} - C_{\varphi Q}^{3} \\ C_{tZ} &= c_{W}C_{tW} - s_{W}C_{tB} \\ \hline C_{tW} \\ \hline C_{Qq}^{1,8} &= \sum_{i=1,2} C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)} \\ C_{Qq}^{3,8} &= \sum_{i=1,2} C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)} \\ C_{Qq}^{8} &= \sum_{i=1,2} C_{uq}^{1(i33i)} - C_{qq}^{3(i33i)} \\ C_{lQ}^{8} &= \sum_{i=1,2} C_{uq}^{8(ii33)} \\ C_{lQ}^{+} &= C_{lQ}^{1} + C_{lQ}^{3} \\ C_{lQ}^{-} &= C_{lQ}^{1} - C_{lQ}^{3} \\ C_{eQ}^{-} \\ \hline \end{split}$$

- Following Top WG note
- Only colour octet 2-light-2-heavy operators
- No 4-heavy operators (see later)
- Only linear $\mathcal{O}(1/\Lambda^2)$ contributions

arXiv:2205.02140

Difference in individual and marginalised limits persists at HL for 4-fermion operators

Eleni Vryonidou

FCC Physics Workshop, Krakow

Best improvement: 4fermion operators driven by differential measurements extending to higher energies

Not much improvement $C_{\phi Q}^{-}$ and $C_{\phi Q}^{3}$ (dominated by b at LEP but better at FCC)

Limited by theory and modelling uncertainties

2-quark-2-lepton not fitted (need $t\bar{t}\ell\bar{\ell}$)

arXiv:2205.02140

Difference in individual and marginalised limits persists at HL for 4-fermion operators

Eleni Vryonidou

FCC Physics Workshop, Krakow

Best improvement: 4fermion operators driven by differential measurements extending to higher energies

Not much improvement $C_{\phi Q}^{-}$ and $C_{\phi Q}^{3}$ (dominated by b at LEP but better at FCC)

Limited by theory and modelling uncertainties

2-quark-2-lepton not fitted (need $t\bar{t}\ell\bar{\ell}$)

arXiv:2205.02140

Difference in individual and marginalised limits persists at HL for 4-fermion operators

Eleni Vryonidou

FCC Physics Workshop, Krakow

Best improvement: 4fermion operators driven by differential measurements extending to higher energies

Not much improvement $C_{\phi Q}^{-}$ and $C_{\phi Q}^{3}$ (dominated by b at LEP but better at FCC)

Limited by theory and modelling uncertainties

2-quark-2-lepton not fitted (need $t\bar{t}\ell\bar{\ell}$)

arXiv:2205.02140

Difference in individual and marginalised limits persists at HL for 4-fermion operators

Eleni Vryonidou

FCC Physics Workshop, Krakow

Best improvement: 4fermion operators driven by differential measurements extending to higher energies

Not much improvement $C_{\phi Q}^{-}$ and $C_{\phi Q}^{3}$ (dominated by b at LEP but better at FCC)

Limited by theory and modelling uncertainties

2-quark-2-lepton not fitted (need $t\bar{t}\ell\bar{\ell}$)

Top quarks at future lepton colliders

Scenarios considered:

Machine	Polarisation	Energy	Luminosity	Reference
		$250 { m ~GeV}$	$2 {\rm ~ab^{-1}}$	
ILC	$P(e^+, e^-):(\pm 30\%, \mp 80\%)$	$500~{\rm GeV}$	4 ab^{-1}	[56]
		$1 { m TeV}$	8 ab^{-1}	
CLIC	$P(e^+, e^-):(0\%, \pm 80\%)$	$380 { m ~GeV}$	1 ab^{-1}	
		$1.4 { m TeV}$	2.5 ab^{-1}	[57]
		$3 { m TeV}$	5 ab^{-1}	
FCC-ee	Unpolarised	Z-pole	150 ab^{-1}	
		$240 { m GeV}$	$5 {\rm ~ab^{-1}}$	
		$350~{\rm GeV}$	0.2 ab^{-1}	[00]
		$365~{\rm GeV}$	$1.5 {\rm ~ab^{-1}}$	
CEPC	Unpolarised	Z-pole	57.5 ab^{-1}	
		$240 { m GeV}$	20 ab^{-1}	
		$350~{\rm GeV}$	0.2 ab^{-1}	ျပပျ
		$360~{\rm GeV}$	$1 {\rm ~ab^{-1}}$	

Observables:

 $e^+e^- \rightarrow b\bar{b}$: σ_b, A^b_{FB} $e^+e^- \rightarrow t\bar{t}$: optimal observable constraints from arXiv:1807.02121 for ILC, CLIC, FCC-ee, CEPC

Optimal observables based on WbWb

Input from arXiv:1807.02121 bounds for *ttZ* and top-lepton 4F operators

ttH is not included here for ILC and CLIC

FCC Physics Workshop, Krakow

Putting everything together

No bounds for 2Q2I operators at the (HL)LHC, no 4Q bounds for lepton colliders Runs above ttbar threshold needed for constraining 2Q2I well Extremely well bounded at for higher energy lepton colliders

Eleni Vryonidou

FCC Physics Workshop, Krakow

FCC-ee improves: ttZ, bbZ, tbW

First access to ttll interactions with runs above the threshold

Pushing the energy frontier How about top quarks at the FCC-hh?

No full study but expect much better sensitivity:

 $\sigma(m_{t\bar{t}} > 1.4 \text{ TeV}) = 1.8 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 0.1 \cdot C_{tG}^2 + 0.1 \cdot C_{tu}^8 + 0.3 \cdot (C_{tu}^8)^2 + ...]$

FCC-hh

 $\sigma(m_{t\bar{t}} > 10 \text{ TeV}) = 0.1 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 1.8 \cdot C_{tG}^2 + 3 \cdot C_{tu}^8 + 256 \cdot (C_{tu}^8)^2 + ...]$

Expect bounds to improve from $\mathcal{O}(1 \text{TeV}^{-2})$ down to $\mathcal{O}(0.1 \text{TeV}^{-2})$

FCC Physics Workshop, Krakow

Pushing the energy frontier How about top quarks at the FCC-hh?

No full study but expect much better sensitivity:

 $\sigma(m_{t\bar{t}} > 1.4 \text{ TeV}) = 1.8 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 0.1 \cdot C_{tG}^2 + 0.1 \cdot C_{tu}^8 + 0.3 \cdot (C_{tu}^8)^2 + \dots]$

FCC-hh

 $\sigma(m_{t\bar{t}} > 10 \text{ TeV}) = 0.1 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 1.8 \cdot C_{tG}^2 + 3 \cdot C_{tu}^8 + 256 \cdot (C_{tu}^8)^2 + ...]$

Expect bounds to improve from $\mathcal{O}(1 \text{TeV}^{-2})$ down to $\mathcal{O}(0.1 \text{TeV}^{-2})$

FCC Physics Workshop, Krakow

Where can the FCC-hh help? 4-heavy operators

Linear+quadratic

Aoude, El Faham, Maltoni, EV arXiv:2208.04962

FCC Physics Workshop, Krakow

Knowing the top helps us know the Higgs **Example: Higgs self-coupling**

 $O_{t\phi} = \left(\phi^{\dagger}\phi\right)\left(\bar{Q}t\right)\tilde{\phi}$, Inclusive H, Higgs plus jets, ttH $O_{tG} = (\bar{Q}\sigma^{\mu\nu}T^A t)\tilde{\phi}G^A_{\mu\nu}$ \longrightarrow tt, ttH, ttV.... $O_H = (\partial_\mu (\phi^{\dagger} \phi))^2$ All Higgs couplings $O_6 = (\phi^{\dagger} \phi)^3$

Constraints

 $O_{\phi G} = \left(\phi^{\dagger}\phi\right) G^{A}_{\mu\nu} G^{A\mu\nu}$, Inclusive H, Higgs plus jets, ttH

HH (single Higgs@NLO)

Knowing the top helps us know the Higgs **Example: Higgs self-coupling**

$$O_{t\phi} = \left(\phi^{\dagger}\phi\right)\left(\bar{Q}t\right)\tilde{\phi},$$

$$O_{\phi G} = \left(\phi^{\dagger}\phi\right)G_{\mu\nu}^{A}G^{A\mu\nu},$$

$$O_{tG} = \left(\bar{Q}\sigma^{\mu\nu}T^{A}t\right)\tilde{\phi}G_{\mu\nu}^{A},$$

$$O_{H} = \left(\partial_{\mu}(\phi^{\dagger}\phi)\right)^{2},$$

$$O_{6} = \left(\phi^{\dagger}\phi\right)^{3}$$

Constraints

Inclusive H, Higgs plus jets, ttH Inclusive H, Higgs plus jets, ttH tt, ttH, ttV....

All Higgs couplings

HH (single Higgs@NLO)

Knowing the top helps us know the Higgs **Example: Higgs self-coupling**

$$O_{t\phi} = (\phi^{\dagger}\phi) (\bar{Q}t) \tilde{\phi},$$

$$O_{\phi G} = (\phi^{\dagger}\phi) G^{A}_{\mu\nu} G^{A\mu\nu},$$

$$O_{tG} = (\bar{Q}\sigma^{\mu\nu}T^{A}t) \tilde{\phi} G^{A}_{\mu\nu},$$

$$O_{H} = (\partial_{\mu}(\phi^{\dagger}\phi))^{2},$$

$$O_{6} = (\phi^{\dagger}\phi)^{3},$$

Constraints

Inclusive H, Higgs plus jets, ttH Inclusive H, Higgs plus jets, ttH tt, ttH, ttV....

All Higgs couplings

HH (single Higgs@NLO)

HH(H) at FCC-hh

FCC-hh reach: 1%, 5% and 50% on H, HH and HHH cross-sections

Eleni Vryonidou

FCC Physics Workshop, Krakow

 O_{tG}

Different sensitivity patterns for H, HH and HHH in SMEFT

Differential distributions in HH and HHH cross-section can help

 $O_{t\varphi}$

Broader Higgs-top interplay

Operators

$$O_{\varphi Q}^{(3)} = i \left(\varphi^{\dagger} \overleftarrow{D}_{\mu}^{I} \varphi\right) (\bar{Q} \cdot Q)$$
$$O_{\varphi Q}^{(1)} = i \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{Q} \cdot Q)$$
$$O_{\varphi t} = i \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{t} \cdot \gamma)$$
$$O_{tW} = (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I}$$
$$O_{tB} = (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$$
$$O_{tG} = (\bar{Q} \sigma^{\mu\nu} T^{A} t) \tilde{\varphi} G_{\mu\nu}^{A}$$
$$O_{t\phi G} = \left(\phi^{\dagger} \phi\right) (\bar{Q} t) \tilde{\phi},$$

Top-Higgs are deeply connected

Eleni Vryonidou

FCC Physics Workshop, Krakow

HZ production in gluon fusion

- Energy growth
- Poorly constrained operator for top fits!

Rossia, Thomas, EV in preparation

 $\overline{000}$

Eleni Vryonidou

What can the Higgs tell us about the top?

Diboson (off-shell Higgs) sensitivity to top couplings

Eleni Vryonidou

FCC Physics Workshop, Krakow

Azatov, Grojean, Paul, Salvioni arXiv:1608.00977

See also: Englert, Soreq, Spannowsky arXiv:1410.5440 Cao et al 2004.02031

Expect much better sensitivity@FCC

Dedicated studies for FCC welcome!

Conclusions

- energy reach
- order of magnitude in higgs and gauge-fermion couplings
- To access top couplings we need runs above the top threshold
- FCC-hh can significantly improve bounds on Vff and hVV couplings, as well as unconstrained 4-quark operators
- interactions
- More studies and combinations very welcome

• FCC can provide a great testing ground for SMEFT, pushing in either the precision or

Global SMEFT fits at FCC-ee show that one can improve over HL-LHC bounds by an

• FCC-hh can probe energy growing amplitudes, improving sensitivity to poorly constrained

Thanks for your attention

