QCD physics at FCC-ee: Intro

6th FCC Physics Workshop Krakow, Jan. 24th 2023

David d'Enterria Pier F. Monni (CERN)

- Though QCD is not per se the driving force for FCC-ee,hh, it is crucial for a vast range of studies (signals & backgrounds):
- Precise α_s determination is needed to accurately & precisely predict all SM x-sections & decay rates (Higgs, top, EWPOs,...)

		Wednesday, 25 January
09:00 → 10:35	QCD	
	09:20	Review of strong coupling at FCC-ee Speaker: Stefan Kluth (Max Planck Society (DE))

- Though QCD is not per se the driving force for FCC-ee,hh, it is crucial for a vast range of studies (signals & backgrounds):
- Precise α_s determination is needed to accurately & precisely predict all SM x-sections & decay rates (Higgs, top, EWPOs,...)
- 2. Higher-order (NⁿLO, NⁿLL) calculations crucial to gain precise control over hadronic final states and jet dynamics.

	WEDNESDAY	, 25 January
09:00 → 10:35 QCD		
09:20	Review of strong coupling at FCC-ee Speaker: Stefan Kluth (Max Planck Society (DE))	
09:45	Precision calculations at FCC-ee (remote) Speaker: Pier Francesco Monni (CERN)	

- Though QCD is not per se the driving force for FCC-ee,hh, it is crucial for a vast range of studies (signals & backgrounds):
- Precise α_s determination is needed to accurately & precisely predict all SM x-sections & decay rates (Higgs, top, EWPOs,...)
- 2. Higher-order (NⁿLO, NⁿLL) calculations crucial to gain precise control over hadronic final states and jet dynamics.

		Wednesday, 25 Janu	JARY
09:00 → 10:35	QCD		
	09:20	Review of strong coupling at FCC-ee Speaker: Stefan Kluth (Max Planck Society (DE))	
	09:45	Precision calculations at FCC-ee (remote) Speaker: Pier Francesco Monni (CERN)	
	10:10	Monte Carlo challenges for FCC-ee and progress Speaker: Simon Plaetzer (U. of Graz)	

- Though QCD is not per se the driving force for FCC-ee,hh, it is crucial for a vast range of studies (signals & backgrounds):
- Precise α_s determination is needed to accurately & precisely predict all SM x-sections & decay rates (Higgs, top, EWPOs,...)
- 2. Higher-order (NⁿLO, NⁿLL) calculations crucial to gain precise control over hadronic final states and jet dynamics.
- 3. Heavy/light quark & gluon separation (flavour tagging, substructure,...) is key for multiple SM measurements (e.g. H Yukawas) and BSM searches (e.g. X → jj decays).

THURSDAY, 26 JANUARY					
09:00 → 09:50 QCD					
09:00	Modeling of hadronization Speaker: Andrzej Konrad Siodmok (Jagiellonian University (PL))				
09:25	Flavour jet tagging at FCC-ee with ParticleNet Speaker: Loukas Gouskos (CERN)				

- Though QCD is not per se the driving force for FCC-ee,hh, it is crucial for a vast range of studies (signals & backgrounds):
- Precise α_s determination is needed to accurately & precisely predict all SM x-sections & decay rates (Higgs, top, EWPOs,...)
- 2. Higher-order (NⁿLO, NⁿLL) calculations crucial to gain precise control over hadronic final states and jet dynamics.
- 3. Heavy/light quark & gluon separation (flavour tagging, substructure,...) is key for multiple SM measurements (e.g. H Yukawas) and BSM searches (e.g. X → jj decays).
- 4. Non-perturbative QCD (hadronisation, colour reconnection,...) impacts studies w/ hadronic final states: e⁺e⁻ → WW,tt (→ jets), m_w, m_{ton} extractions

- Though QCD is not per se the driving force for FCC-ee,hh, it is crucial for a vast range of studies (signals & backgrounds):
- Precise α_s determination is needed to accurately & precisely predict all SM x-sections & decay rates (Higgs, top, EWPOs,...)
- 2. Higher-order (NⁿLO, NⁿLL) calculations crucial to gain precise control over hadronic final states and jet dynamics.
- 3. Heavy/light quark & gluon separation (flavour tagging, substructure,...) is key for multiple SM measurements (e.g. H Yukawas) and BSM searches (e.g. X → jj decays).
- 4. Non-perturbative QCD (hadronisation, colour reconnection,...) impacts studies with hadronic final states: $e^+e^- \rightarrow WW$,ttbar (\rightarrow jets), m_{W} , m_{top} extractions.
- 5. @ FCC-hh, accurate knowledge of parton densities at high-*x* (BSM) and saturation dynamics at small-*x*, MPI dynamics,... is fundamental.

Precision QCD in e⁺e⁻ collisions

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to probe very precisely q,g dynamics:

Advantages compared to p-p collisions: 1) QED initial-state with known kinematics 2) Controlled QCD radiation (only in final-state) 3) Well-defined heavy-Q, quark, gluon jets 4) Smaller non-pQCD uncertainties: no PDFs, no QCD "underlying event",... Direct clean parton fragmentation & hadroniz.

Plus QCD physics in γγ (EPA) collisions:

FCC Phys. Week, Krakow, Jan'23

Precision QCD in e⁺e⁻ collisions (FCC-ee)

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to probe very precisely q,g dynamics:

David d'Enterria (CERN)

Very rich QCD physics at FCC-ee

Very rich QCD at FCC-ee. Examples:

Example: QCD coupling α_s

Z,W hadronic widths provide the most precise (0.1%) α_s extraction:

Reduced parametric uncertainties: Higgs, EWPO, top... x-sections & decays

Summary of future parametric uncertainties:

						orracare		
Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + α_s (%) Scale($\%$)	Quantity	FCC-ee	future param.und	c. Main source
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.3	$2 \Gamma_Z \text{[MeV]}$	0.1	0.1	$\delta lpha_s$
ttH	0.611	± 3.0	\pm 8.9	-9.3 + 5.9	R_b [10 ⁻⁵]	6	< 1	$\delta lpha_s$
Channel	$M_{ m H}[m GeV]$	$\delta \alpha_s(\%)$	Δm_b	Δm_c	R_{ℓ} [10 ⁻³]	1	1.3	$\delta lpha_s$
$H \rightarrow c\bar{c}$	126	\pm 7.1	$\pm 0.1\%$	$\pm 2.3 \%$	Msbar mass em	or budget (from	threshold scan)	\frown
	126	4.1			$(\delta M_t^{ m SD-low})^{ m exp}$	$\delta M_t^{\rm SD-1}$	$(\delta \overline{m}_t(\overline{m}_t))^{\text{converse}}$	$\left(\left(\delta \overline{m}_t(\overline{m}_t) \right)^{\alpha_s} \right)$
$\Pi \rightarrow gg$	120	\pm 4.1	$\pm 0.1\%$	$\pm 0\%$	40 MeV	50 MeV	7 – 23 MeV	70 MeV
					⇒ improveme	nt in $lpha_s$ cruc	ial	$\delta \alpha_s(M_z) = 0.001$

FCC Phys. Week, Krakow, Jan'23

David d'Enterria (CERN)

Very rich QCD at FCC-ee. Examples:

Example: High-precision g & q jet studies

- Exploit FCC-ee H(gg) as a "pure gluon" factory: $H \rightarrow gg$ (BR~8% accurately known) provides $\mathcal{O}(100.000)$ extra-clean digluon events.
- Compare to $Z \rightarrow qq(g)$: Multiple handles to study g rad./jet properties:
 - Gluon vs. quark via H→gg vs. Z→qq
 (Profit from excellent g,b separation)
 - Gluon vs. quark via Z → bbg vs. Z → qq(g) (g in one hemisphere recoiling against 2-b-jets in the other).
 - ♦ Vary E_{jet} range via ISR: $e^+e^- → Z^*, \gamma^* → jj(\gamma)$
 - Vary jet radius: small-R down to calo resol

- <u>Higgs/BSM/flavour</u>: Improve q/g/Q discrimin. tools: ML training on pure samples
- <u>pQCD</u>: Check NⁿLO antenna functions. High-precision QCD coupling.
- <u>non-pQCD</u>: Gluon fragmentation: Octet neutralization? (zero-charge gluon jet with rap gaps). Colour reconnection? Glueballs ? Leading η's,baryons?

Η

00000000

000000000

t

Very rich QCD at FCC-ee. Examples:

Non-pQCD example: Colour reconnection

- Colour reconnection among partons is source of uncertainty in m_w, m_{top}, aGC extractions in multijet final-states. Especially in pp (MPI cross-talk).
- CR "string drag" effect impacts all FCC-ee multi-jet final-states: e⁺e⁻ → WW(4j), H(2j,4j), ttbar,...
 - Shifted masses & angular correlations (CP studies).
 - Combined LEP e^+e^- → WW(4j) data best described with 49% CR, 2.2 σ away from no-CR.
- Exploit huge W stats (×10⁴ LEP) to measure
 - $\rm m_w$ leptonically & hadronically and constrain CR:

"Recent" PYTHIA option: QCD-inspired CR (QCDCR) (1505.01681):

 $\mathcal{O}(1)$

 \otimes kinematics

 $\Gamma_W \gg \Lambda_{\rm OCD}$

FCC Phys. Week, Krakow, Jan'23

16/17

FCC QCD working group activities

Join our monthly meetings: https://indico.cern.ch/category/5662/

QCD and yy physics

April 2023
24 Apr - 28 Apr Parton Showers for future e+e- colliders NEW
December 2022
13 Dec FCC-ee QCD Physics jet flavour & tagging
October 2022
03 Oct FCC-ee QCD Physics jet physics and fragmentation functions
July 2022
27 Jul FCC-ee QCD Physics Kickoff Meeting (ZOOM only)
January 2022
31 Jan - 04 Feb alpha_s(2022)

Join our e-groups mailing: FCC-PED-PhysicsGroup-QCD https://e-groups.cern.ch/e-groups

Contact the conveners:

FCC-PED-PhysicsGroup-QCD-admin@cern.ch

"Parton showers for FCC-ee" workshop

https://indico.cern.ch/e/PartonShowers2023 CERN, 24th–28th April 2023

Parton Showers for future e+e- colliders

24–28 Apr 2023 CERN Europe/Zurich timezone	Enter your search term Q					
Overview	The unprecedented experimental performance expected by the next generation of lepton colliders poses					
Timetable	an outstanding challenge for theoretical computations that must be pushed far beyond the current state					
Registration	of the art to guarantee an optimal exploitation of the data. Among the theoretical aspects of this programme, Monte Carlo event generators play a special role due to their versatility in bridging					
Participant List	theoretical predictions and experimental measurements. The precision reached by current event					
Videoconference	generation algorithms is dramatically insufficient for this task, thus demanding a dedicated effort to improve their formal accuracy and achieve a higher precision in event simulations. The goal of this					
Accommodation	workshop is to bring together many of the world leading experts in the field to discuss recent					
Directions to and inside CERN	developments and main obstacles on path to precision, as well as encourage new collaborations to tackle big open questions such as:					
Computer Access						
Child Care	 Perturbative accuracy of parton showers (PS): logarithmic accuracy; treatment of colour & spin; amplitude-level evolution; heavy quarks & resonances. 					
Health insurance, VISA	 Non perturbative QCD: tuning observables at the future lepton colliders; hadronisation & colo reconnection. 					
Code of Conduct	• Matching to hard scattering: N(N)LO QCD and beyond; production of resonant final states.					
TH secretariat	The workshop will consist of one or two talks a day, leaving most of the time for discussions among the					
thworkshops.secretariat	participants and collaboration work.					
PartonShowers-2023-or	Organising committee: • Samuel Abreu (CERN) • Mrinal Dasgupta (University of Manchester) • David d'Enterria (CERN) • Silvia Ferrario Ravasio (CERN) • Silvia Ferrario Ravasio (CERN)					

- Alexander Huss (CERN)
- Alexander Karlberg (CERN)
- Michelangelo Mangano (CERN)
- Pier Monni (CERN)
- Simon Plätzer (University of Graz)
- Alba Soto Ontoso (CERN)
- Gregory Soyez (IPhT Saclay)
- Robert Szafron (BNL)
- Johann Usovitsch (CERN)

CERN 4/3-006 - TH Conference Room Go to map There are no materials yet.

Backup slides

Jet substructure & flavour tagging

(but uncertainties from non-pQCD effects)

MC parton showers differ on gluon (less so quark) radiation patterns:

Jet substructure & flavour tagging

QCD uncertainties on EWK observables

- With ×10⁵ more Z's than LEP, some EWPO uncerts at FCC-ee will be dominated by QCD syst. Example: e⁺e⁻→bb forward–backward asymmetry
 - 8 measurements at LEP: 4 lepton-, 4 jet-charge-based
 - Largest EWPO discrepancy today wrt. the SM: 2.8σ
- **Exp.** uncertainties of $A_{FB}^{0,b}$ at LEP: ~1.6%
 - Statistical: ±1.5% (~0.05% at FCC-ee)
 - Systematics: ±0.6% (QCD-related: ±0.4%)
- QCD effects on A^{0,b}_{FB} (depending strongly on exp. selection procedure):
 - Gluon splitting (TH control: α_s^2 corrections)
 - Smearing of b-jet/thrust axis
 - b and c radiation & fragmentation. B and D decay models.
 [Uncertanties estimated by Abbaneo et al., EPJC 4 (1998)]
- Impact of QCD effects on A^{0,b}_{FB} revisited by implementing original analyses in up-to-date retuned parton-shower+hadronization MCs

FCC Phys. Week, Krakow, Jan'23

Reduced QCD uncertainties on A_{FB} at Z pole

■ QCD uncertainties recomputed from PYTHIA8.226 (7 tunes) & VINCIA2.2 ■ $e^+e^- \rightarrow bb$ forward–backward asymmetry for lepton-based analyses:

• $e^+e^- \rightarrow bb$ forward–backward asymmetry for jet-charge-based analyses:

- 2020 vs. 1998 parton shower+hadronization uncertainties halved:
 - Lepton-based analyses: $\sim 1.4\% \rightarrow \sim 0.7\%$
 - Jet-charge-based analyses: $\sim 0.7\% \rightarrow \sim 0.3\%$
- FCC-ee data will significantly improve PS & non-pQCD syst. uncert.

FCC Phys. Week, Krakow, Jan'23

David d'Enterria (CERN)

2011.00530 [hep-ph]]

[DdE & Yan,

Non-pQCD: Detailed hadronization studies

Precision low- p_{T} PID hadrons in $10^{12} e^+e^- \rightarrow (10^{14} hadrons)$ for studies:

- Baryon & strangeness production. Colour string dynamics.
- Final-state correlations (spin: Bose-Einstein, Fermi-Dirac; momenta; space)
- Bound state formation: Onia, multi-quark states, glueballs, ...

 Understand breakdown of universality of parton hadronization with system size observed at LHC.

Baseline vacuum e⁺e⁻ studies for high-density QCD in small & large systems.

Also impact e.g. ultra-high-energy cosmic-ray MCs (muon puzzle)

Summary: High-precision QCD at FCC-ee

 The precision needed to fully exploit all future ee/pp/ep/eA/AA SM & BSM programs requires exquisite control of pQCD & non-pQCD physics.
 Unique QCD precision studies accessible at FCC-ee:

