Review of strong coupling at FCC-ee

Stefan Kluth MPI für Physik, München 6th FCC Physics Workshop, Krakow 25.01.23 1 Overview
2 Inclusive
3 Semi-inclusive
4 Exclusive
5 Bonus track
6 Summary

[PDG, PTEP 2020 (2020) 083C01, updated in D. d'Enterria, S. Kluth, G. Zanderighi (eds.), arxiv: 2203.08271]

1 Overview

Summary from " α_s (2022) – Precision measurements of the QCD coupling" at ECT* (Trento) 31.01.-04.02.2022

FCC-ee impact on most categories

Expect 3.10¹² hadronic Z decays \Rightarrow $6 \cdot 10^{11} \text{ Z} \rightarrow \text{b}\overline{\text{b}}, 10^{11} \text{ T pairs}, \dots$

FCC-hh

5.10⁸ W decays

2 Inclusive: τ decays

Moments of vector (even πs) and axial-vector (odd πs) "spectral functions" with N3LO QCD + np terms $\Rightarrow \alpha_s(m_\tau) \Rightarrow \alpha_s(m_z)$

2 Inclusive: Z and W decays

2 Inclusive: Z and W decays

FCC-ee: improved α_{QED} , $|V_{cs}|$, $|V_{cd}|$, m_W ; assume N4LO QCD Z: $\alpha_s(m_Z) = 0.12020 \pm 0.00013_{exp} \pm 0.00005_{par} \pm 0.00022_{theo}$ W: $\alpha_s(m_Z) = 0.11790 \pm 0.00012_{exp} \pm 0.0004_{par} \pm 0.00019_{theo}$

[D. d'Enterria, arxiv: 2203.08271]

3 Semi-inclusive: Soft FFs

Charged hadrons momentum spectra x = $2E_h/\sqrt{s}$ FF: $D_{a,h}(z,Q)$, z = p_h/p_a , Q = \sqrt{s}

Distorted Gaussian model: $D \approx C(\alpha_s(t))exp(\int^t \gamma(\alpha_s(t'))dt')$ $t = ln(Q), NNLO^*+NNLL evolution$ of $\gamma(\alpha_s(t'))$ $\alpha_s(m_z) = 0.121 \pm 0.001_{exp} \pm 0.002_{theo}$

FCC-ee: $\Delta \alpha_{S,exp} < 0.1\%$, full NNLO+NNLL $\Rightarrow \Delta \alpha_{S,theo} \le 0.001$?

[R. Perez-Ramos, D. d'Enterria, arxiv: 2203.08271]

4 Exclusive: jets and event shapes

$$\begin{split} &1/\sigma d\sigma/dy = dA/dy \alpha_{\rm S}(Q) + \\ & dC/dy \alpha_{\rm S}(Q)^2 + dC/dy \alpha_{\rm S}(Q)^3 + {\rm h.o.} \\ & + \, {\rm scale} + \, ``\sigma_{_{0 \to \, tot}} \, ``$$

NNLO QCD (+resum.) needs np (hadronisation) corr. ~1/Q

MC-based vs analytic models

Same structure for other event shapes and for jet production rates

Typical differences MC vs analytic $\Delta \alpha_{\rm S}(m_{\rm Z})_{\rm np-model} = O(1\%)$ [e.g. A. Hoang et al., Phys. Rev. D91 (2015) 9]

4 Exclusive: jets and event shapes

Hadronisation unc. within Fitted SCET based model

Significant deviations from world average $\alpha_s(m_z) = 0.1179 \pm 0.0009$

[A. Hoang et al., Phys. Rev. D91 (2015) 9]

NNLO + N3LL' (SCET), LEP/SLD/PETRA/TRISTAN data: T: $\alpha_s(m_z) = 0.1134 \pm 0.0002_{exp} \pm 0.0005_{had} \pm 0.0011_{theo}$ C: $\alpha_s(m_z) = 0.1123 \pm 0.0002_{exp} \pm 0.0007_{had} \pm 0.0014_{theo}$

4 Exclusive: jets and event shapes

Linear power corrections in large n_f limit in 3-jet region \Rightarrow constant shift of pert. prediction replaced by observable dependent shift $\zeta(.)$

significant $\Delta \alpha_s(m_z)$ w.r.t. const. shift

See also: new (groomed) observables, [S. Marzani, D. Reichelt, S. Schumann, NLO+NLL-PS MCs G. Soyez, arxiv: 2203.08271]

FCC-ee: $\Delta \alpha_{\text{S,exp}} < 0.1\%$, $\Delta \alpha_{\text{S,had}} < 1\%$?, $\Delta \alpha_{\text{S,had}} < 1\%$?, $\Delta \alpha_{\text{S,hadron masses}} \approx 1\%$?

5 Bonus track: FCC-ee with √s < m_z

Proposal for Snowmass 2021 Be Collect 10⁹ events with FCC-ee at \sqrt{s} = 20, 30, 40, ... GeV MC

Benefactors:

MC tuning and soft $QCD \Rightarrow$ hadronisation systematics

 R_{I}^{γ} at high precision

FFs: scaling violation, long., transv., asym., soft FFs $\xi = ln(1/x)$, ...

v] In-situ calibrations?, EW, etc pp

[A. Banfi et al., www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF5_EF4_Andrii_Verbytskyi-208.pdf]

5 R_1^{γ} at $\sqrt{s} < m_z$ with FCC-ee

 $R_{l exp}^{\gamma} = \sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ $R_{l theo}^{\gamma} = 3\sum_{i} q_i (1 + \alpha_S/\pi + 1.441(\alpha_S/\pi)^2 + ...)$ [A.V. Nesterenko, arxiv: 2203.08271]

 $\Delta R_{I}^{\gamma}/R_{I}^{\gamma} \approx \Delta \alpha_{S} \Rightarrow \Delta \alpha_{S,stat} \approx 0.0001 \text{ with}$ $\Delta R_{I}^{\gamma}/R_{I}^{\gamma} \approx 10^{-4} \Rightarrow O(10^{8}) \text{ events}$

 $\Delta R_{I}^{Z}/R_{I}^{Z} \approx 4.10^{-5}$ FCC-ee, dominated by lepton acceptance \Rightarrow similar for R_{I}^{γ} $\Rightarrow \Delta \alpha_{S,exp} \approx 0.0001$

Pure y couplings, low scale \Rightarrow less BSM "pollution"

 $\Delta \alpha_{s,theo} \approx 0.0002$ as for $R_{I}^{z,w}$

5 Scaling violation in hard FFs

Charged hadrons h with scaled momentum $x = 2E_h/\sqrt{s}$ at various $\sqrt{s} = Q$

 $1/\sigma d\sigma/dx = \int_{0^1} \sum_{f} C_f(z, \alpha_S(Q)D_f(x/z) dz/z)$

LEP (ADO) NLO DGLAP analyses: $\alpha_s(m_z) = 0.1192 \pm 0.0056_{exp} \pm 0.0070_{theo}$

FCC-ee statistics and systematics \Rightarrow exp. unc. $\Delta \alpha_{S,exp} < 1\%$ (or better?)

Today NNLO DGLAP for proton pdfs \Rightarrow theo. unc. $\Delta \alpha_{s,theo} \approx 0.001$? (N3LO DGLAP?)

6 Summary

- FCC-ee has great potential for strong coupling
 - From low to high scales
 - Inclusive, semi-inclusive, exclusive processes
- FCC-ee only alternative to Lattice QCD and ep colliders (FCC-eh, LHeC) for $\Delta \alpha_s(m_z) \approx 0.1\%$
- FCC-ee low energy ($\sqrt{s} < m_z$) runs promising!

