

Top FCNC

6th FCC Physics Workshop

Seddigheh Tizchang (IPM)

In collaboration with: Patrezia Azzi (INFN), Hamzeh Khanpour (UDINE, ICTP), Mojtaba Mohammadi Najafabadi (IPM) and Emmanuel Francois Perez (CERN)

January 25, 2023

1 Motivation

- 2 Top-FCNC appearance at FCC-ee
- S Analysis strategy signal selection and Background estimation
- Results Comparison with other experiments
- **5** Summary and Conclusion

- In the SM, top FCNC is forbidden at tree level and highly suppressed at one-loop corrections due to GIM.
- $Br(t \to qV) < 10^{-12}$ ($V = H, \gamma, Z, g$) in the SM, but can be enhanced up to 10^{-5} in some BSMs.
- Any observation of top FCNC would be a clear signal of new physics beyond the SM.
- FCC-ee offers ideal environment to study FCNC due to reduction of QCD background as well as high luminosity.

3/18

January 25, 2023

Motivation

Experimental Limits

- LHC experiments have been searching for Top FCNC.
- So far, no clear evidence for the presence of top quark FCNC interactions has been observed and upper limits are set on the anomalous couplings and top quark branching.

- OPAL & 600 pb⁻¹ data collected at 189-209 GeV & leptonic and the hadronic decay modes of the W boson & the Durham algorithm [*Physics Letters B 521 (2001)* 181-194](*Br(t → zq)* = 13.7%).
- L3 & the total integrated luminosity of 634 pb⁻¹ & $\sqrt{s} =$ 189 to 209 GeV & Durham algorithm [*Physics Letters B 549 (2002) 290-300*] ($Br(t \rightarrow \gamma q) = 4.1\%$ and $Br(t \rightarrow Zq) = 13.7\%$).

イロト イボト イヨト イヨ

Top-FCNC appearance at FCC-ee

Effective Framework

The most general effective Lagrangian describing the FCNC interactions can be parameterized as:

$$\begin{split} \mathcal{L}_{FCNC} &= \sum_{q=u,c} \frac{g_s}{2m_t} \bar{q} \lambda^a \sigma^{\mu\nu} (\zeta^L_{qt} P^L + \zeta^R_{qt} P^R) t G^a_{\mu\nu} - \frac{1}{\sqrt{2}} \bar{q} (\eta^L_{qt} P^L + \eta^R_{qt} P^R) t H - \\ &- \frac{g_W}{2c_W} \bar{q} \gamma^\mu (X^L_{qt} P_L + X^R_{qt} P_R) t Z_\mu + \frac{g_W}{4c_W m_Z} \bar{q} \sigma^{\mu\nu} (K^L_{qt} P_L + K^R_{qt} P_R) t Z_{\mu\nu} + \\ &+ \frac{e}{2m_t} \bar{q} \sigma^{\mu\nu} (\lambda^L_{qt} P_L + \lambda^R_{qt} P_R) t A_{\mu\nu} + H.c. \end{split}$$

January 25, 2023 5 / 18

イロト イヨト イヨト イヨ

FCNC production at FCC-ee

- At the FCCee, FCNC *tqV* interaction can lead to single top production
- This analysis is performed at the center of mass energy 240 and 365 GeV.
- The distinctive signature of the signal is:
 - A top quark
 - A light energetic jet

signal signature: One lepton, one neutrino, exactly 2exclusive jets which one of them are tagged as b-jet.

All MC files are generated in the FCCSW (https://github.com/HEP-FCC/FCCAnalyses) framework with $DelphesPythia8_EDM4HEP$ and IDEA Delphes Card

January 25, 2023

6/18

Jet clustering algorithms selection

Exactly two exclusive jet is required:

Reconstructed top mass distribution for three different schemes, for $tc\gamma$ coupling.

Jet Definition = Durham & E-scheme

MC simulation

Backgrounds:

	σ [fb]	σ [fb]
Process	$\sqrt{s} = 240 \text{GeV}$	$\sqrt{s} = 365 \text{GeV}$
ZH	202	117
WW	16439	10717
ZZ	1360	643
e−e+qq	1637	620
single top	0.01	0.2
tbjj	-	6
tī	-	800

preselection cuts:

- Lepton and jets momentum are required to have: *p* > 15GeV
- Polar angle of lepton and jets are required to be: $\theta > 13$ degree
- The angular separation between lepton and jets are required to satisfy: $\Delta R > 0.5$
- Missing energy is grather than 15 Ger FI

ヘロト 不同 トイヨト 不正

Mass reconstruction in electron and muon channels-240 GeV

electron channel

muon channel

January 25, 2023 9 / 18

Mass reconstruction in electron and muon channels-365 GeV

electron channel

muon channel

distinctive variables

Optimal cuts on individual variables increase our sensitivity to the signal.

$$\sqrt{s} = 240 \text{ GeV}$$

 H_T is scalar sum of momentum of all outgoing particles.

11/18

January 25, 2023

イロト イヨト イヨト イヨ

Selection cuts-240 GeV

The variables which have the best possible discrimination power between the signal and background processes:

- 140 GeV < $M_{\rm top}$ < 190 GeV.
- **2** 70 GeV $< M_W < 90$ GeV.
- **3** $p_{\text{bjet}} > 40 \text{ GeV}.$
- ($p_{\text{lightjet}} > 40 \text{ GeV}.$
- **5** $p_{\ell} > 20$ GeV.
- 6 ME > 30 GeV.
- **⊘** $\Delta R(\ell, b_{jet}) < 3.5.$
- **8** $0.35 < E_{bjet}/(E_{bjet} + E_{lightjet}) < 0.7.$

Selection cuts-365 GeV

- 140 GeV < $M_{\rm top}$ < 190 GeV.
- **2** 70 GeV $< M_W < 90$ GeV.
- **3** $p_{\text{bjet}} > 30 \text{ GeV}.$
- $p_{\text{lightjet}} > 120 \text{ GeV}.$
- **6** $p_{\ell} > 20$ GeV.
- **6** ME > 30 GeV.
- $\bigcirc \Delta R(\ell, b_{\text{jet}}) < 3.5.$
- **8** $0.2 < E_{\text{bjet}}/(E_{\text{bjet}} + E_{\text{lightjet}}) < 0.5.$
- 9 $H_T > 300$ GeV.

3

ヘロト 人間 ト 人注 ト 人注 ト January 25, 2023 13/18

Cut Flow table

cut flow table for 240 GeV

\sqrt{s} = 240 GeV	tcγ	tcZ	ZH	WW	ZZ	eebb	eeqq (q=uds)	single top
Cross section	14.327	34.132	201.868	16438.5	1358.99	455.7	1635.9	0.010753
Preselection	3.1542	7.5154	1.1953	3.75948	2.76677	19.251	0.155146	0.0003208
Final selection	1.3686	3.2622	0.00847	0.254797	0.01127	0.1807	0.001439	3.2259×10^{-7}

cut flow table for 365 GeV

\sqrt{s} = 365 GeV	$tc\gamma$	tcZ	ZH	WW	ZZ	tī	eebb	single top	single top (tbjj)
Cross section	25.958	50.9517	117.3	10716.5	642.8	800.0	615.2	0.227	5.98
Preselection	5.2107	10.2299	0.6240	2.55696	1.21039	39.7574	25.0175	0.006297	0.2159
Final selection	1.9599	4.3406	0.00410	0.00857	0.00809	1.10752	0.004332	$2.276 imes 10^{-6}$	0.006947

14/18

January 25, 2023

Results

95% CL upper limts on the anomalous FCNC couplings and consequently on the branching ratios are estimated by using Higgs Combine tools.

$\sqrt{s}=240~{ m GeV}~\&\mathcal{L}=5~{ m ab}^{-1}$	$Br(t \to c\gamma)$	$Br(t \to cZ)$
Electron channel	9.60×10^{-5}	3.53×10^{-5}
Muon channel	6.29×10^{-5}	2.31×10^{-5}

$\sqrt{s} = 365 \text{ GeV } \& \mathcal{L} = 1.5 \text{ ab}^{-1}$	$Br(t \to c\gamma)$	$Br(t \to cZ)$
Electron channel	1.65×10^{-4}	6.96×10^{-5}
Muon channel	1.47×10^{-4}	6.19×10^{-5}

	$Br(t ightarrow c \gamma)$	$Br(t \to cZ)$	
Energy & channel statistical combination	1.99×10^{-5}	8.19×10^{-6}	

Comparison with current and future experiments

イロト 不得 とくほとくほう

Top FCNC

January 25, 2023 16 / 18

Summary and to do next

Summary

- The sensitivity of the FCC-ee to top FCNC interaction is probed by searching *tq* production.
- O This study has been done in the official FCCAnalysis framework.
- leptonic decay of the top qurak is considered.
- We presented the upper limits on the branching ration for the leptonic (electron & muon) channel of single-top quark production via FCNC at two FCC-ee benchmarks ($\sqrt{s} = 240$ GeV at 5 ab⁻¹ and $\sqrt{s} = 365$ GeV at 1.5 ab⁻¹).
- **6** We show the statistical conbination will improve the sensitivity to $tq\gamma$ and $tc\gamma$ couplings.

To do next

- Applying the mis-tagging efficiency for b-quark.
- Including hadronic decay channel of top quark.
- Statistical combination of leptonic and hadronic decay channel to increase the sensitivity to FCNC interactions.
- Applying systematic and statistical uncertainties.
- Osing Multivariate analysis to extract the limits.

イロト イヨト イヨト イヨト

Summary and Conclusion

Top FCNC

January 25, 2023 18 / 18