LLP experimental perspectives at FCC-ee: Heavy Neutral Leptons

Suchita Kulkarni (she/her)

Junior group leader suchita.kulkarni@uni-graz.at

(on behalf of the FCC-ee LLP group)

This project is supported from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.

Neutrino mass generation mechanisms

See e.g. Deppisch et al. <u>arXiv:1502.06541</u> See also talks by <u>R. Franceschini</u>, <u>B. Karmakar</u>

UNI GRAZ

Heavy neutral leptons - signature space

Expectations

Snowmass arXiv:2203.05502

- Phenomenological study, combination of all final states ≥ 2 charged tracks, corresponds to 4 observed events
- 5×10^{12} Z produced, no backgrounds, ideal detector

- Aim: Perform an FCC case study with the "official" analysis tools and framework available
 - Generated signal samples in Madgraph5 v3.2.0 + Pythia8 + Delphes, with the latest IDEA card processed with FCCAnalysis machinery (See talk by <u>G. Ganis</u>)
 - Try to be as realistic as possible

- Generated Majorana and Dirac HNLs with the SM_HeavyN_CKM_AllMasses_LO and SM_HeavyN_Dirac_CKM_Masses_LO models
- Experimental signature:
 - Displaced vertex: small mixing angle, no associated prompt lepton, unlike LHC
 - Prompt final state: larger mixing angle
- Current focus: electron flavoured HNL only, primary studies of $e e \nu$ final state
- Other final states include: $e \mu \nu$, $e \tau \nu$, e j j, $\nu j j$, $\nu b b$

Lovisa Rygaard's master thesis

See also Rohini Sengupta's thesis

- One of the first implementation and validation of BSM scenarios in FCC frameworks
- Performed validation to retrieve HNI lifetime from gen level distributions

Signal vs background discrimination

Lovisa Rygaard's master thesis

- Centrally-produced "spring2021" background samples with the IDEA detector, at $\sqrt{s}=91\,{\rm GeV}$
- Measuring total missing energy at FCC-ee is possible; $p_{miss} > 10 \,\text{GeV}$
- $|d_0| > 0.5 \text{ mm}$ removes the vast majority of SM background

Lovisa Rygaard's master thesis

• Generated signal samples with enough statistics

	Before selection	Exactly 2 reco e	Vetoes	∮ > 10 GeV	$ d_0 > 0.5 \mathrm{mm}$
$m_N = 10 \text{ GeV}, V_{eN} = 2 \times 10^{-4}$	2534 ± 11	1006 ± 7	996 ± 7	951 ± 7	907 ± 7
$m_N = 20 \text{ GeV}, V_{eN} = 9 \times 10^{-5}$	458 ± 2	313 ± 2	308 ± 2	293 ± 2	230 ± 1
$m_N = 20 \text{ GeV}, V_{eN} = 3 \times 10^{-5}$	51.0 ± 0.2	34.7 ± 0.2	34.2 ± 0.2	$\textbf{32.6} \pm \textbf{0.2}$	31.2 ± 0.2
$m_N = 30 \; { m GeV}, V_{eN} = 1 imes 10^{-5}$	5.01 ± 0.02	3.85 ± 0.02	3.76 ± 0.02	3.54 ± 0.02	3.39 ± 0.02
$m_N = 50 \text{ GeV}, V_{eN} = 6 \times 10^{-6}$	1.23 ± 0.01	0.99 ± 0.01	0.96 ± 0.01	0.92 ± 0.01	0.729 ± 0.004

• Need background samples with enough statistics

	Before selection	Exactly 2 reco e	Vetoes	<i>p</i> ∕ > 10 GeV	$ d_0 > 0.5 \text{ mm}$
$Z \rightarrow \tau \tau$	$2.21 \times 10^{11} \pm 7.00 \times 10^{7}$	$5.49 imes 10^9 \pm 1.10 imes 10^7$	$5.10 imes 10^9 \pm 1.06 imes 10^7$	$2.52 \times 10^9 \pm 7.47 \times 10^6$	$6.64\times10^4\pm3.84\times10^4$
$Z \rightarrow ee$	$2.19 \times 10^{11} \pm 6.94 \times 10^{7}$	$1.75 \times 10^{11} \pm 6.19 \times 10^{7}$	$1.53 \times 10^{11} \pm 5.80 \times 10^{7}$	$7.07 imes 10^8 \pm 3.94 imes 10^6$	\leq 3.94 $ imes$ 10 6
$Z \rightarrow bb$	$9.97 imes 10^{11} \pm 4.14 imes 10^{7}$	$5.64 imes 10^8 \pm 9.85 imes 10^5$	$3.25 imes 10^5 \pm 2.36 imes 10^4$	$1.22 imes 10^5 \pm 1.45 imes 10^4$	$1.72 imes 10^3 \pm 1.72 imes 10^3$
$Z \rightarrow cc$	$7.82 \times 10^{11} \pm 2.61 \times 10^{7}$	$1.69\times10^7\pm1.21\times10^5$	$5.22 \times 10^{3} \pm 2.13 \times 10^{3}$	$1.74 imes 10^3 \pm 1.23 imes 10^3$	\leq 1.23 $ imes$ 10 ³
$Z \rightarrow uds$	$2.79 \times 10^{12} \pm 8.83 \times 10^{7}$	$2.30 imes 10^7 \pm 2.54 imes 10^5$	$2.79 \times 10^{3} \pm 2.79 \times 10^{3}$	\leq 2.79 \times 10 ³	\leq 2.79 $ imes$ 10 ³

First sensitivity estimates

Lovisa Rygaard's master thesis

See also Sissel Bay Nielsen's thesis

- First estimate using official FCC machinery
- $e e \nu$ final state only, projections limited by background statistics

• Unlike LHC, no same sign vs opposite sign lepton final state at FCC-ee at Z pole

• Dirac neutrinos $(e^+e^- \rightarrow Z \rightarrow \nu \bar{N}; e^+e^- \rightarrow Z \rightarrow \bar{\nu}N)$

$$\frac{1}{\sigma_{N,\bar{N}}} \frac{d\sigma_{N,\bar{N}}}{d\cos\theta} \propto \left(g_R^2 (1 \mp \cos\theta)^2 + g_L^2 (1 \pm \cos\theta)^2 + \frac{M_N^2}{m_Z^2} (g_L^2 + g_R^2) \sin^2\theta \right)$$

• Majorana neutrinos ($e^+e^- \rightarrow Z \rightarrow \nu N$)

$$\frac{1}{\sigma_N} \frac{d\sigma_N}{d\cos\theta} \propto \left(1 + \cos^2\theta + \frac{M_N^2}{m_Z^2}\sin^2\theta\right)$$

Tanishq Sharma's master thesis

• Central question: What are the best kinematic observables to distinguish between Dirac and Majorana neutrinos at FCC-ee?

• Most promising variables for $e e \nu$ final state are angle between final state electron - positron and missing energy

Dimitri Moulin's master thesis

• Central question: What are the best kinematic observables to distinguish between Dirac and Majorana neutrinos at FCC-ee?

ejj final state gen level comparisons

• Further studies ongoing, also considering energy distributions of final state e^- and e^+

Plot by Giacomo Polesello

- Finalise existing sensitivity analyses by obtaining more background statistics
- Add more final states for sensitivity studies
- Explore interplay of different flavours
- Develop analyses in different parts of the detector

Questions

• Analysis matrix

See also talk by <u>G. Polesello</u>

Decay final state	Decay length		
jjl	Prompt		
<i>jjv bbv</i>	LL decay in ID		
$l l' \nu$	LL decay in Calo		

 $l, l' = e, \mu, \tau$ j = u, d, s, c, s

- An active interest in many of the final states and signatures exists
 - Many opportunities for contributions, you are welcome to join
 - Contact: Giacomo Polesello, Rebeca Gonzalez Suarez, Juliette Alimena

Analyse effects of collimated objects at low masses

UNI GRAZ

Conclusion

- Heavy neutral leptons are well motivated beyond the Standard Model particles which can help explain neutrino masses
- They provide a test case of long lived particle searches at FCC-ee

See <u>G. Ripellino's talk</u> for other LLP scenarios

- First studies to 'realistically' estimate FCC-ee sensitivity to explore HNL parameter space underway
- Contains two aspects:
 - Overall sensitivity to HNL mass and mixing parameters
 - Distinction between Dirac and Majorana neutrinos
- First sensitivity studies performed during snowmass process, further avenues including necessity of more background statistics identified
- First studies about differences in angular distributions for Dirac vs. Majorana performed, promising variables identified
- Thanks to the software and computing team for help with analyses developments

Special thanks to our master students who are the drivers behind the scenes: Lovisa Raaygard (2022), Tanishq Sharma (2022) and Dimitri Moulin (ongoing)

- For $m_N \lesssim 10~{\rm GeV}$, the two leptons are increasingly close to each other
- May also result in 'fatjet' for *ljj* final state