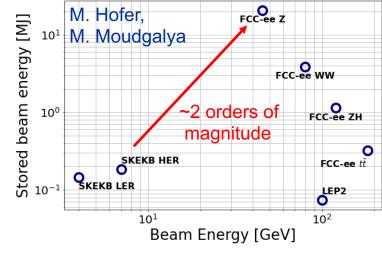


FCC-ee IR Beam Losses

A. Abramov, G. Broggi, R. Bruce, M. Hofer, S. Redaelli


6th FCC Physics Workshop, Kraków – 25/01/2023

Many thanks for discussions and input to:

K. André, M. Boscolo, H. Burkhardt, A. Ciarma, Y. Dutheil, P. Hunchak, A. Lechner, K. Oide, R. Ramjiawan, T. Raubenheimer, F. Zimmermann

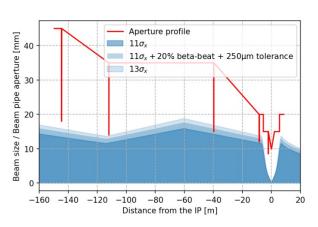
FCC-ee beam losses and collimation

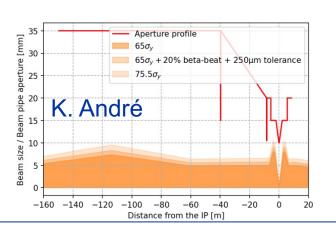
- The FCC-ee presents unique challenges
 - The stored beam energy reaches 17.8 MJ for the 45.6 GeV (Z) mode, which is comparable to heavy-ion operation at the LHC
 - Such beams are highly destructive: a collimation system is required
 - The main roles of the collimation system are:
 - Protect the equipment from unavoidable losses
 - Reduce the backgrounds in the experiments
 - Two types of collimation foreseen for the FCC-ee:
 - The beam halo (global) collimation
 - Synchrotron Radiation (SR) collimation near the IPs
- Beam loss and collimation studies are essential to ensure the safe and efficient operation of the FCC-ee

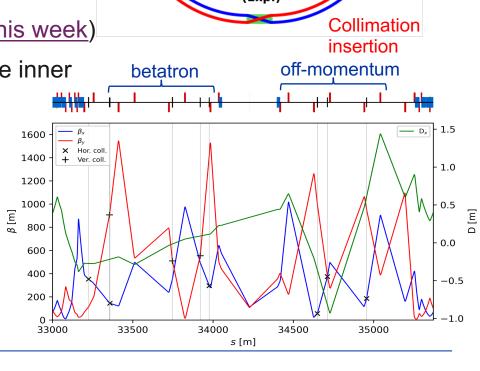
Comparison of lepton colliders

Damage to coated collimator jaw due to accidental beam loss in the SuperKEKB – T. Ishibashi (<u>talk</u>)

Beam loss sources


- Many processes can lead to beam losses in the FCC-ee
 - See talk by H. Burkhardt (link)
 - Beam losses can lead to:
 - Detector backgrounds
 - Superconducting magnet quench risk and material damage
 - Radiation damage and material activation
- Loss scenarios selected for particle tracking studies:
 - Beam halo
 - Top-up injection
 - Spent beam (Beamstrahlung, Bhabha scattering)
 - Failure modes (injection failures, asynchronous dump, others)
 - Beam tails from Touschek scattering and beam-gas interactions




FCC-ee collimation system

- Dedicated halo collimation system in PF
 - Two-stage betatron and off-momentum collimation in one insertion
 - Defines the global aperture bottleneck
 - Dedicated collimation optics (M. Hofer)
 - First collimator design for beam cleaning performance (G. Broggi)
- Synchrotron radiation collimators around the IPs
 - 6 collimators and 2 masks upstream of the IPs (K. André talk this week)

 Designed to reduce detector backgrounds and power loads in the inner beampipe due to photon losses

(Exp.)

IPG

(RF)

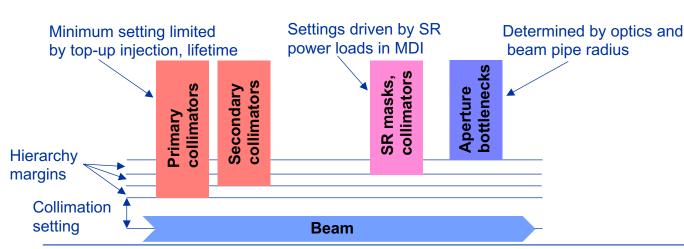
(RF)

 $L_{LSS} = 2.1 \text{ km}$

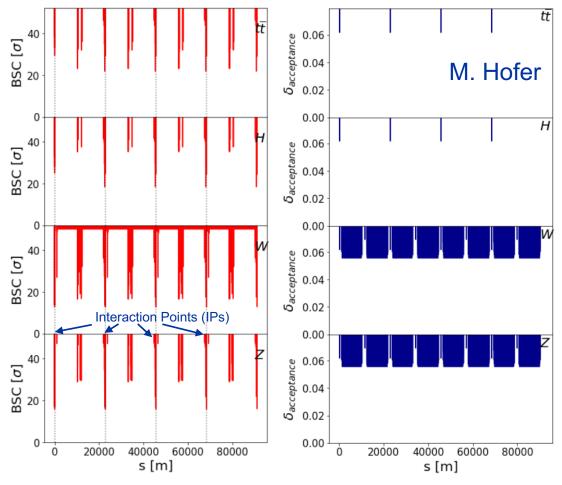
(Exp.

 $L_{arc} = 9.6 \text{ km}$

 $L_{SSS} = 1.4 \text{ km} \text{ (Exp.)}$


M. Hofer

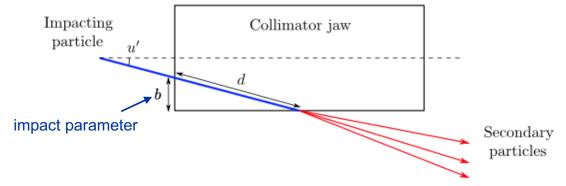
(Inj./Extr.


FCC-ee aperture

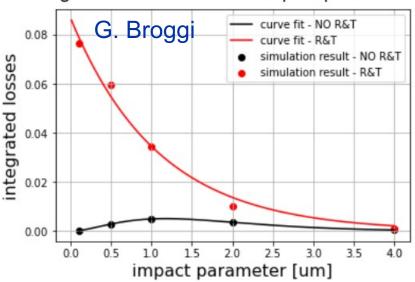
- The aperture bottlenecks are in the experimental interaction regions (IRs)
- The bottlenecks must be protected
 - The final focus quadrupoles are superconducting and there is a risk of quenches
 - The detector is sensitive to backgrounds from beam losses
 - The SR collimators and masks are not robust to large direct beam impacts, can also produce backgrounds
 - The collimation tolerances are tight (talk, M. Hofer)

Beam stay-clear (**BSC**) is the distance from the beam to the aperture in units of beam size

The momentum acceptance is the δ = **A** / **D**, where **A** is mechanical aperture and **D** is dispersion



Aperture bottlenecks for the different operating modes



Current study: beam halo losses

- "Generic beam halo from slow diffusion" beam loss scenario:
 - Assume a slow diffusion process halo particles intercepted by the primary collimators
 - The diffusion is not simulated, all particles start impacting a collimator
 - The particles have the "worst" impact parameter
 - Determined with an impact parameter scan
 - Provides a conservative performance estimate
 - Study horizontal and vertical betatron halo, and off-momentum halo impacts
 - Track the particles scattered out from the collimator and record losses on the aperture
 - Specify a beam lifetime that must be sustained
 - Currently assuming 5 min

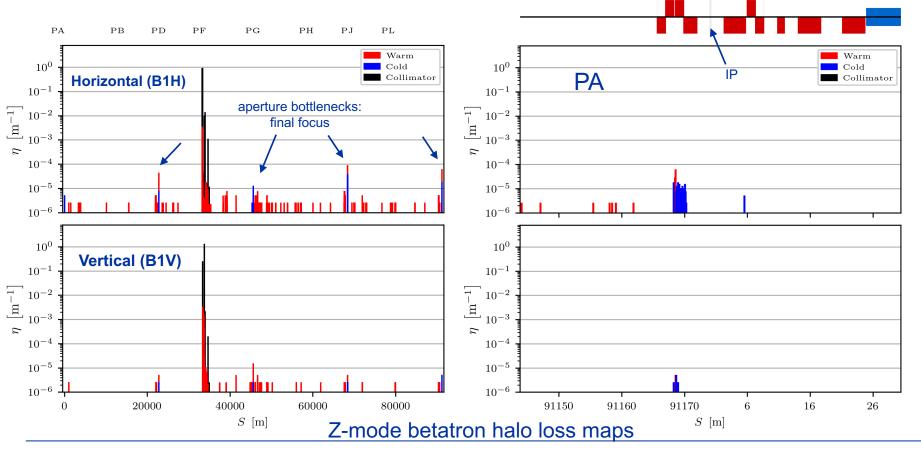
integrated losses in IP1 vs. impact parameter

Impact parameter scan for 2 IP CDR lattice with MoGr primary collimator, with and without radiation and tapering (R&T)

FCC-ee parameters used

Beam energy	[GeV]	45.6	80	120	182.5
Layout		PA31-1.0			
# of IPs		4			
Circumference	$[\mathrm{km}]$	91.174117		91.174107	
Bending radius of arc dipole	$[\mathrm{km}]$	9.937			
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0
SR power / beam	[MW]	50			
Beam current	[mA]	1280	135	26.7	5.00
Bunches / beam		10000	880	248	40
Bunch population	$[10^{11}]$	2.43	2.91	2.04	2.37
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98
Arc cell		Long 90/90 90/90			
Momentum compaction α_p	$[10^{-6}]$	28.5		7.33	
Arc sextupole families		75 146			46
$eta_{x/y}^*$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6
Transverse tunes/IP $Q_{x/y}$		53.563 / 53.600 100.565 / 98.595			
Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01		1.95 / 2.75
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	2.5 / 8.8
Harmonic number for 400 MHz		121648			
RF freuquency (400 MHz)	MHz	399.994581		399.994627	
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826
Long. damping time	[turns]	1168	217	64.5	18.5
RF acceptance	[%]	1.6	3.4	1.9	3.0
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5
Beam-beam ξ_x/ξ_y^a		$0.0023 \ / \ 0.135$	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140
Luminosity / IP	$[10^{34}/{\rm cm}^2{\rm s}]$	182	19.4	7.26	1.25
Lifetime $(q + BS)$	[sec]	_	-	1065	4062
Lifetime (lum)	[sec]	1129	1070	596	744

K. Oide (talk)



^aincl. hourglass.

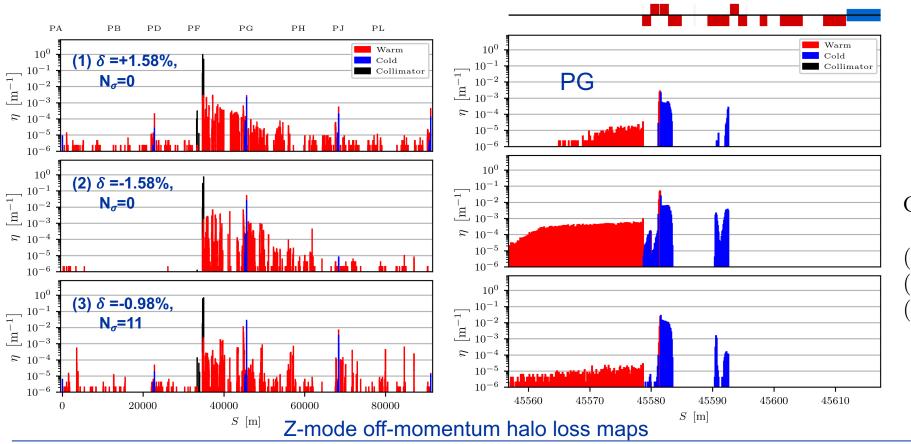
Beam halo losses - betatron

- Z mode is the current focus (Beam 1, 45.6 GeV positrons), 17.8 MJ stored beam energy
- Particles simulated directly impacting the primary collimators
- No radiation and tapering, SR collimators not included, 1 µm impact parameter

Total loss power: 59.2 kW

Case Max. int. power $\pm 100 \text{ m}$ from IP [W] B1H 2.80 B1V 0.09 significant protection

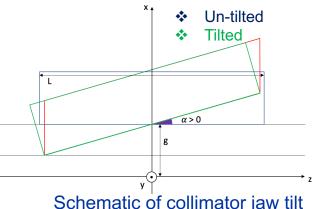
Power loads in the MDI for 5 min beam lifetime


from the collimation system

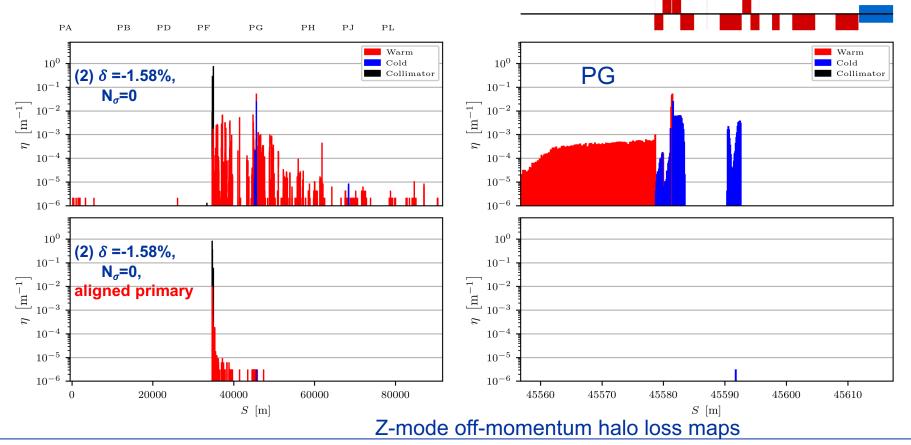
Beam halo losses - off-momentum

- First studies of off-momentum losses carried out
- Similar method to the betatron case:
 - Particles impacting the off-momentum primary collimator
 - Set δ and betatron amplitude to obtain 1 μ m impact parameter

25/01/2023

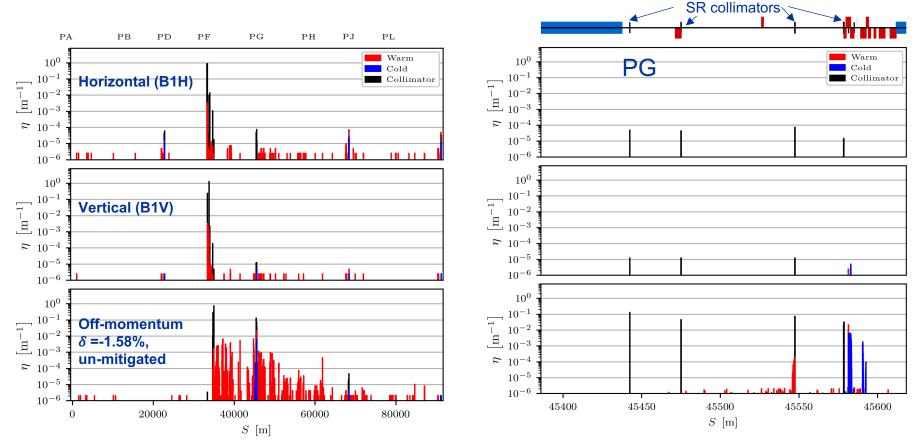

Total loss power: 59.2 kW

Case Max. int. power $\pm 100 \text{ m}$ from IP [W] $(1) + \delta$ 88.848 $(2) - \delta$ 1810.754 $(3) - \delta, N_{\sigma}$ 1310.374


Power loads in the MDI for 5 min beam lifetime

Off-momentum losses mitigation

- The results show high losses at the aperture bottlenecks
- Aligning the primary collimator with the beam divergence helps
 - This mitigation strategy has shown promise, but must be studied in detail
 - Alternative mitigation strategies under study optics, layout, settings


Schematic of collimator jaw tilt

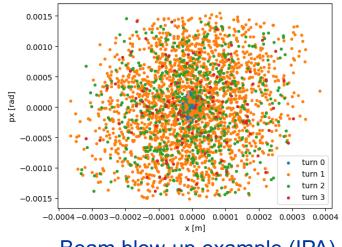
Beam halo losses – SR collimators

- The SR collimators upstream of the IPs have been integrated in the model
- The collimators intercept losses locally upstream of the IPs
- The energy deposition in the collimators and the backgrounds in the detector should be evaluated

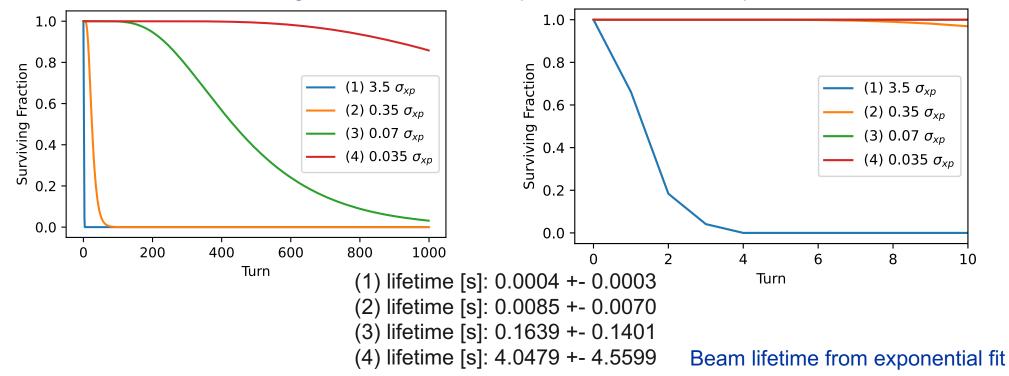
Z-mode off-momentum halo loss maps with SR collimators

Beam halo losses in the FCC-ee

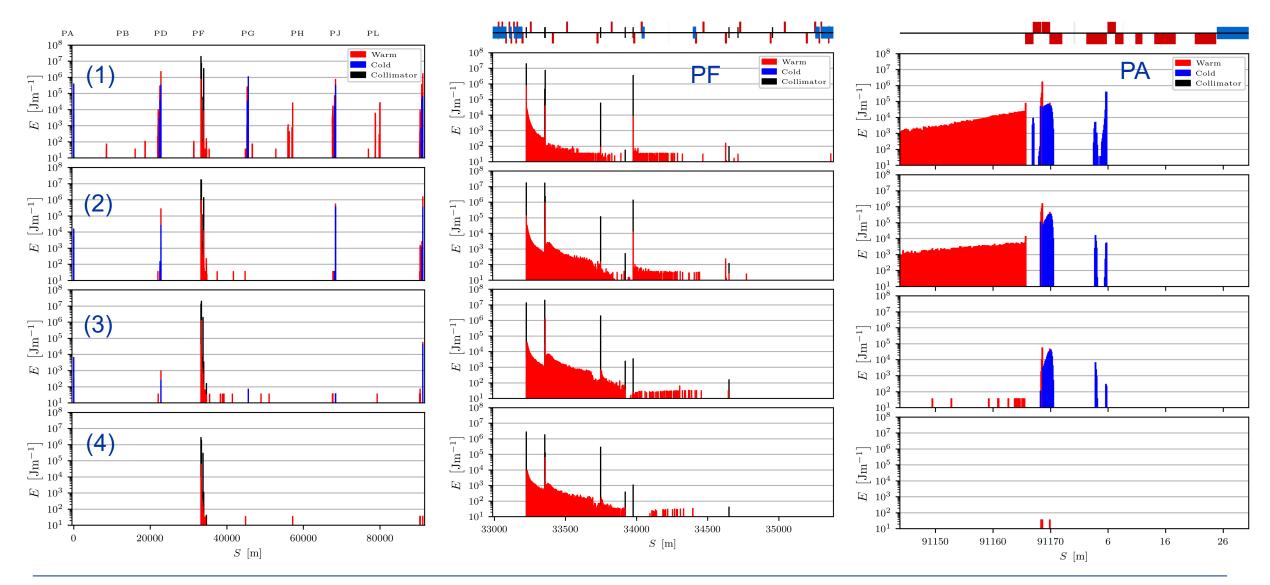
- Halo losses studied for the Z mode
 - For betatron losses, only a small fraction of the total loss power ends up in the IRs
 - For off-momentum losses, IRG is exposed to high power loads, up to 1.8 kW over the MDI
 - Mitigation with tilted primary collimators alleviates the off-momentum losses, but more studies are needed on the operational feasibility
 - SR collimators and masks intercept losses in all cases
 - The impact on the MDI and the detector is studied by the MDI team (A.Ciarma talk this week)
- The halo losses must be studied for the other beam modes
 - The Z mode is the most critical due to the high stored beam energy


Fast losses in the FCC-ee

- Huge anomalous losses reported by SuperKEKB (T. Ishibashi, talk)
 - Informally referred to as 'crazy beam'
 - Up to 80% of beam intensity lost over 2 turns
 - Damage to collimators due to the beam loss
 - The cause is not identified yet
- Some considerations for FCC-ee fast beam losses
 - These beam loss scenarios are difficult to study without good knowledge of the driving process
 - Time-scale, location, type and magnitude of beam disturbance
 - Can consider first studies of the response to such losses in synthetic cases
 - Controlled beam excitation in simulations
 - Multi-turn tracking


Z-mode fast losses

- Study fast beam blow-up in simulations
 - Random uniform per-particle kicks applied at 18 locations in the ring
 - Excitation amplitude adjusted to give different beam lifetime
 - This simulation setup may not be representative of real-world losses


Beam blow-up example (IPA)

Z-mode fast losses - simulation

Z-mode fast losses

Huge losses observed in the simulation scenario

- Losses in the order of MJ / m in the superconducting final focus quadrupoles
- This loss energy is likely destructive for the final focus doublets, detectors, and / or the tungsten SR collimators there (not modelled for these simulations)
- Due to the large excitation amplitude, particles impact the aperture bottlenecks directly, before being intercepted by the collimation system in PF
 - Primary losses outside the collimation insertion are possible for other types of fast beam losses

Mitigation

- This loss scenario (80% intensity loss over 2 turns) is likely not tolerable without additional collimators, close to and in-phase with the aperture bottlenecks, like the LHC tertiary collimators
- Sacrificial protection devices can also be considered
- The loss scenario must also be defined better for the FCC-ee
 - Time-scale and percentage intensity loss
 - Driving process (location, transverse vs. longitudinal, etc.)
 - Protection cannot be designed before it is understood how SuperKEKB losses translate to FCC-ee

Summary

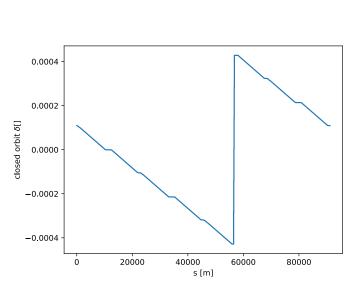
Studies of beam losses and collimation for the FCC-ee

- First collimation system design available, including beam halo and SR collimators
- Simulations of beam loss scenarios ongoing
 - Beam halo losses studied Z mode, iteration with the MDI team
 - No show-stoppers identified so far
 - Input on equipment loss tolerances needed to optimize performance

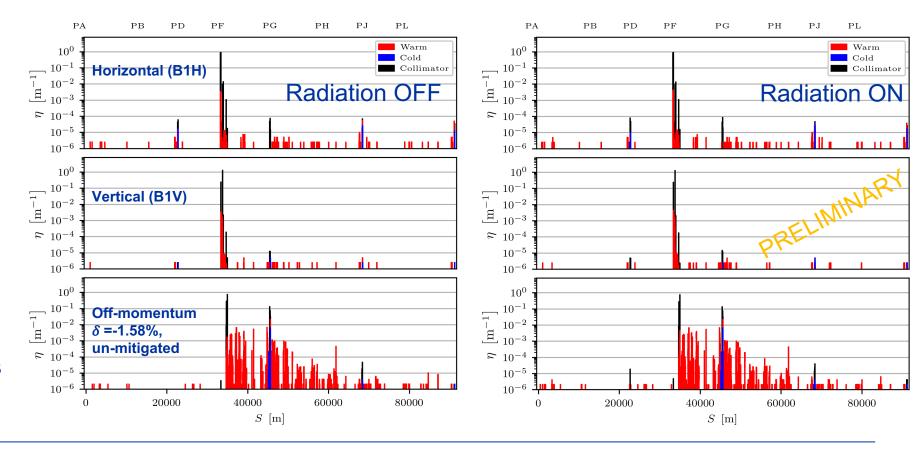
Next steps

- Study other beam loss scenarios
- Obtain input for the equipment loss tolerances superconducting magnets, collimators, other
 - Energy deposition studies required for magnets, collimators, and masks
 - Detailed evaluation of detector backgrounds required shielding, muon backgrounds
- Study all beam modes

Thank you!



Backup slides



Effects of synchrotron radiation for the Z mode

- No significant differences in losses observed for the Z mode with radiation and optics tapering.
- The results are preliminary, more checks to be carried out.

Closed orbit δ due to SR, used to adjust magnet strengths

