Detector Stray Magnetic Fields

Benoit Curé, Nikkie Deelen, Alexey Dudarev, Matthias Mentink - EP Magnet Team - 25.01.2023

Introduction

- During feasibility study the position of the booster in IR is investigated
- At the booster position, the magnetic field in should not exceed 10 mT
- During this talk the B-field of the detector magnets is discussed, and the resulting stray field at the booster position:

x,y = [8, 1.3] m / x,y = [7, 1.3] m

Cavern and Booster Ring

- Booster ring passes through cavern outside detector volume
- Detector stray field may have strength of *O*(10 mTesla) at location of booster ring (ILD study, see next slide)
- Not expected to be a problem that a few corrector magnets cannot correct for [F.Zimmerman]

Three concepts for FCC-ee detectors Content of the talk

- 1. CLiC-Like Design (CLD): Solenoid, steel in HCal, and iron yoke;
- 2. International Detector for Electron-positron Accelerators (IDEA): Solenoid, steel in HCal, iron yoke;
- 3. Liquid Calorimeter Design (LCalo): Solenoid, steel in HCal

1. CLiC-Like Detector

1.1 CLD solenoid concept

- Solenoid producing a 2T field in the center of the detector volume
- Made with Al-stabilised NbTi conductor, in two layers of 300 turns
- Operating current is 20 kA, operating temperature is 4.5 K
- Stored energy of 600MJ, cold mass weight of 52 t
- Energy density of 11.6 kJ/kg

Figure 1: Isometric view of the CLD detector, with one quarter removed. https://arxiv.org/abs/1911.12230

- 7 layers of magnetic steel
 - In between 6 layers of RPC: 40 mm gap for each layer
- Barrel layers have 177 mm of steel, end-cap layers 210 mm
- Weight ~ 4.5 kton

1.3 CLD Field Map

- 2.5
- 2.0
- 1.5 1.0
- 0.5

- Axisymmetric model in COMSOL®
- Only solenoid and magnetic steel are modelled for the purpose of the (stray) field calculation

1.4 CLD Stray field

 Stray field calculated at 8 m and 7 m for different booster positions, parallel to the z-axis

2. International Detector for Electron-positron Accelerators

2.1 IDEA: solenoid parameters (concept) http://dx.doi.org/10.1109/TASC.2022.3149682

- Solenoid producing a 2T field in the center of the detector volume
- Made with Al-stabilised NbTi conductor, in one layers of 436 turns
- Operating current is 20 kA, operating temperature is 4.5 K
- Energy density of 12.3 kJ/kg
- Two yoke layers, 500 mm thick, weight ~ 3.9 kton
- Dual readout calorimeter with 55 % steel, weight ~ 1.5 kton

2.2 IDEA: the dual-readout calorimeter

M. Antonello, L. Pezzotti, E. Prosperio, "DR calorimeter full simulation geometry", Bologna - June 2019

Slice details

Each *slice* has 150 towers: $\Delta 9 = 1.125^{\circ}$ (0.0196 rad) - Tower height 2m.

Barrel: 40*2 = 80 towers - Inner length: 2.5m.

Endcap: 35*2 = 70 towers - Inner length: 2.25m - up to ~0.100 rad.

• 55 % fill-factor assumed (55 % magnetic steel) for the (stray) field calculations

Assumptions:

- Iron layer thickness barrel: **34 mm** (28 mm gap)
- Iron layer thickness endcap: 35 mm (29 mm gap)

2.3 IDEA Field Map

- Axisymmetric model in COMSOL®
- Only solenoid and magnetic steel are modelled for the purpose of the (stray) field calculation

2.4 IDEA Stray Field

Stray field calculated at 8 m and 7 m for different booster positions, parallel to the z-axis

IDEA Stray field (x,y) = [7.0,1.3]m

IDEA Stray field (x,y) = [8.0,1.3]m

3. Liquid Calorimeter design

3.1 LCalo Design: important parameters Magnet CONCEPT:

0

- Solenoid @ R = 2.7 m producing a **2T field in the** center of the detector
- Made with Al-stabilised NbTi conductor, one layer, 562 turns 3
- Operating current 20 kA, operating temperature 4.5 K
- Stored energy of ~250MJ, cold mass weight of ~20 t
- No yoke, iron in HCal with fillfactor 50%, weight ~ 1.8 kton

3.2 Lcalo Field Map

Axisymmetric model in COMSOL®

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

- Only solenoid and steel are modelled for the purpose of the stray field calculation
- Assumed <u>36</u> steel layers in barrel, 20 mm thick with 20 mm gap
- Assumed 25 mm thick layers in end-cap with 25 mm gap
- NLayers small ring: 10, \bullet big ring 10, end-cap 40

3.3 LCalo Design Stray field

Stray field calculated at 8 m and 7 m for different booster positions, parallel to the z-axis

LCalo OUT Stray field (x,y) = [7.0,1.3]m

LCalo OUT Stray field (x,y) = [8.0,1.3]m

Conclusions

- Maximum stray field for CLD is almost 4-5 x higher than 10 mT @ x = 8 m.
 Magnet has largest bore, and highest magnetic flux.
- IDEA maximum stray field is ~5 mT, well below 10 mT @ 8 m, and below 10 mT @ 7 m as well.
- LCalo Design stray field ~20 mT @ 8 m, but there is no iron yoke.
- Compensation solenoids in the interaction region are not included yet, design
 of those magnets is ongoing by M. Koratzinos.

Back-up slides

Back-up: HB-curve

BH(t) (T)

BH(t) (T)

3.1 LCalo Design: important parameters

Magnet CONCEPT:

- Solenoid @ 2.235 m producing a **2T field in the center** of the detector
- Made with Al-stabilised NbTi conductor, one layer, 562 turns
- Operating current 20 kA, operating temperature 4.5 K
- Stored energy of ~250MJ, cold mass weight of ~20 t
- No yoke, iron in HCal with fill-factor 50%

3.3 LCalo Design Stray field, solenoid inside

 Stray field calculated at 8 m and 7 m for different booster positions, parallel to the z-axis

LCalo IN Stray field (x,y) = [7.0,1.3]m

