

Synergies in top-beauty and first look at b-tagging with exclusive decays

Kevin Kröninger¹, Romain Madar², Stéphane Monteil², <u>Lars Röhrig^{1,2}</u> **6th FCC Physics Workshop – January 27, 2023** ¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne

heinrichhertzstiftung

Motivation

■ SMEFT approach to connect modifications at top- and beauty scales with common set of operators \rightarrow Anomalies at $\mathcal{O}(m_B)$ and $\mathcal{O}(m_Z)$ translate to higher energy scale

Motivation

- Combination of top- and beauty observables: synergies in global SMEFT fits [1]
- More operators can be probed at once + different collider setups can be tested
- High precision and variety of observables is the key to extract tight constraints
 → To which extent can FCC-ee bring improvements?

t + b-observables: Removes flat directions in parameter space.

U technische universität dortmund

Motivation

- FCC-ee (run-plan) offers ideal environment to study $Z \rightarrow b\bar{b}$ and top-observables at one machine
- Especially *Z*-pole run with $O(10^{12})$ events offers **unrivaled precision** and possibilities
- Deviations on $Z \rightarrow b\bar{b}$ observables/scale translate to top-energy scale

Phase	\sqrt{s} / GeV	Event statistics
Z^0	88 — 95	$5 \cdot 10^{12} (10^6 \cdot \text{LEP})$
W^+W^-	158 - 192	3·10 ⁸ (10 ⁴ · LEP)
Z^0H	240	10 ⁶
tī	345 - 365	10 ⁶

Measurements at the Z-pole: R_b

- Running down the scale to $Z \rightarrow b\bar{b}$: R_b and A^b_{FB} with the largest pull from EWPO fit
- R_b is defined as ratio of $Z \rightarrow b\bar{b}$ events wrt. to $Z \rightarrow$ hadrons
- Potential for SM-deviation in R_b : $\frac{\Delta R_b^{\text{LEP}}}{R_{\perp}^{\text{tree}} R_{\perp}^{\text{SM}}} \approx 40 \%$

O(10¹²) Z → bb̄ events @FCC-ee: Measurements systematically limited

 Goal: reduce systematic uncertainty to scale of statistical uncertainty

New hemisphere tagging: Overview

Exclusive b-hadron tagging

Select the hemispheres by exclusively tag *b*-hadrons with a potential purity of P = 100 % and an efficiency of $\varepsilon \approx 1$ %

<u>Outline</u>

- **1. Proof of principle**: run equations for R_b with FCC-ee numbers by
 - **1.1** ... using the standard LEP-tagger
 - **1.2** ... using exclusive *b*-hadron decays as tagger out of inclusive sample
- 2. Verify purity of 100 % and a potential efficiency of 1 % from simulation
- 3. Study of possible uncertainties
- L. Röhrig | Jan. 27, 2023

New hemisphere tagging: Proof of principles

- Standard-tagger calculations with measured values from Ref. [2] (ALEPH Collaboration)
- Tagging based on long lifetime of *b*-hadrons and *b/c*-hadron mass difference
- Result:
 - $\rightarrow R_b = 0.2167 \pm 0.0011 (stat) \pm 0.0013 (syst)$
 - $ightarrow arepsilon_b = 0.2271 \pm 0.0016$
- LEP-times: Syst. unc. dominated by *udsc*-physics + MC statistics
- Machinery to test the statistical uncertainty on R_b for different scenarios:
 - 1. Tagging at FCC-ee à la LEP
 - 2. Tagging exclusively at FCC-ee

Different tagging scenarios at FCC-ee

I: À la LEP

- **Standard tagger** includes the contributions from *udsc*-physics
- Here: Numbers for ε_{b,c,uds} and uncertainties provided by Ref. [2], taking all uncertainty correlations into account
- Suppose $N^{Z \to had} = 10^{12}$: $\Delta R_b(stat) = 2.022 \cdot 10^{-6}$

Different tagging scenarios at FCC-ee

I: À la LEP

- Standard tagger includes the contributions from *udsc*-physics
- Here: Numbers for *ɛ_{b,c,uds}* and uncertainties provided by Ref. [2], taking all uncertainty correlations into account
- Suppose $N^{Z \to had} = 10^{12}$: $\Delta R_b(stat) = 2.022 \cdot 10^{-6}$

II: Exclusive b-hadron decays

- Exclusive tagger doesn't include the contributions from udsc-physics:
 ε_{c,uds} = 0.0
- Here: Assume $\varepsilon_b = 1$ %, taking all uncertainty correlations into account, equations simplify
- Suppose $N^{Z \to had} = 10^{12}$: $\Delta R_b(\text{stat}) = 4.570 \cdot 10^{-5}$

 \rightarrow Reduction of major source of systematic uncertainty to the cost of statistical uncertainty (hemisphere correlation uncertainty (syst.) becomes central)

Starting point and assumptions

- 3 spring2021 samples with 10^7 events each: $Z \rightarrow b\bar{b}$, $Z \rightarrow c\bar{c}$ and $Z \rightarrow uds uds$
- Event reweighting with $R_b = 0.216$, $R_c = 0.172$ and $R_{uds} = R_u + R_d + R_s = 0.604$
- Vertex information of all charged particles is taken from MC
- Aiming for the rec. of **two representative decay modes** (generalize for more):
 - **1. Fully charged:** $B^+ \rightarrow [\pi^- K^+]_{\bar{D}^0} \pi^+$, $\mathsf{BR}(\bar{D}^0 \rightarrow \pi^- K^+) \approx 4\%$
 - **2. With one** π^{0} : $B^{+} \to [\pi^{-}K^{+}\pi^{\bar{0}}]_{\bar{D}^{0}} \pi^{+}$, $BR(\bar{D}^{0} \to \pi^{-}K^{+}\pi^{0}) \approx 14\%$

Including also partially reco. particles, e.g. $B^+ \to [\overline{D}^0 Y]_X \pi^+$ (with e.g. $X = D^* (2007)^0$ and $Y = \pi^0$), classification by number N_X of not-reco. particles X_i , max $(N_X) = 4$

Fully charged decay mode

$\bar{D}^0 \rightarrow \pi^- K^+$ -reconstruction

- Charged pion and kaon collection combined with a max. distance between the vertices of 50 μm to emulate resolution effects
- Oppositely charged candidates are chosen to emerge from the **same hemisphere**
- Fit D^0 peak with **triple Gaussian**: $\mu_{\text{central}} = 1.8648 \text{ GeV}$, $\sigma_{\text{combined}} = 0.0039 \text{ GeV}$

Decay mode including a neutral pion

$\bar{D}^0 \rightarrow \pi^- K^+ \pi^0$ -reconstruction

- Neutral pion candidate reconstructed out of **two photons** with $\measuredangle(\gamma_1, \gamma_2) < \frac{3\pi}{32} \approx 17^\circ$
 - \rightarrow **Reduces combinatorics**, e.g. from two photons in two different hemispheres
- Fit of the resolution of the angle between two photons (including all photons) with triple Gaussian model: $\mu_{central} = \mathcal{O}(10^{-5})$, $\sigma_{combined} = 0.0084 \, rad \approx 0.48^{\circ}$

Decay mode including a neutral pion

$\bar{D}^0 \rightarrow \pi^- K^+ \pi^0$ -reconstruction

- Neutral pion candidate reconstructed out of **two photons** with $\measuredangle(\gamma_1, \gamma_2) < \frac{3\pi}{32} \approx 17^\circ$
 - \rightarrow **Reduces combinatorics**, e.g. from two photons in two different hemispheres
- Selected candidates fitted with double-sided Crystalball + Gaussian function (82/18): $\mu_{\text{shared}} = 0.1359 \text{ GeV}, \sigma_{\text{combined}} = 0.0170 \text{ GeV}$

 $+ \pi^{\pm}K^{\mp}$

_

... back to the motivation

- \blacksquare Motivation: show that a purity of \approx 100 % and a total efficiency of 1 % can be reached
- Apply **mass cut** to the B^{\pm} -mass fit ($\pm 3\sigma$ for charged mode, not optimized so far)

Process	mass window	Purity / %	Efficiency / %
$B^+ o [\pi^- K^+]_{\bar{D}^0} \pi^+ B^+ o [\pi^- K^+ \pi^0]_{\bar{D}^0} \pi^+$	[5.258, 5.301]	99.50	$8.34 \cdot 10^{-3}$
	[5.217, ∞]	99.00	$1.27 \cdot 10^{-2}$

- First reconstruction seems promising, now: sum up possible *b*-hadron decay modes including also neutral pions
 - $\blacksquare B^+ \to \overline{D}{}^0 X, \ D^- X, \ D_s^- X, \ \eta_c X, \ J/\psi X, \ \chi_c X, \ \dots$
 - $\Lambda_b \to \Lambda_c \pi^-$, $\Lambda_c D_s^-$, $\Lambda_c^* X$, ...
 - $\blacksquare B^0$ and B_s ...

 \rightarrow Librarian work to be done

Conclusions and Outlook

- Anomalies at m_B and m_Z -energy scale: **modifications at top-energy scale** \rightarrow SMEFT approach provides a common set of operators to connect both
- Combination of different scales showed synergies in global interpretations: to which extent can FCC-ee improve?
- Bringing systematic uncertainties down to the scale of the statistical uncertainty is key for measurements @FCC-ee (especially at Z-pole!)
- Proposal for R_b (further application for A^b_{FB}) measurement: exclusively reconstruct b-hadrons to tag hemispheres without light-physics contamination
- **Very pure reconstruction** possible in FCC-ee environment
- \blacksquare Remaining systematic uncertainty: correlation between the hemispheres (needs to be $<10^{-4})$

Conclusions and Outlook

- Anomalies at m_B and m_Z -energy scale: **modifications at top-energy scale** \rightarrow SMEFT approach provides a common set of operators to connect both
- **Combination** of different scales showed synergies in global interpretations: **to which** extent can FCC-ee improve?
- Bringing systematic uncertainties down to the scale of the statistical uncertainty is key for measurements @FCC-ee (especially at Z-pole!)
- Proposal for R_b (further application for A^b_{FB}) measurement: exclusively reconstruct b-hadrons to tag hemispheres without light-physics contamination
- **Very pure reconstruction** possible in FCC-ee environment
- \blacksquare Remaining systematic uncertainty: correlation between the hemispheres (needs to be $<10^{-4})$

Thank you for your attention!

Backup

Impact of the photon-angle on π^0 reconstruction

- Impact of the angle between the two photons on the π^0 invariant mass distribution
- Reduction of large fraction of combinatorical background by keeping the signal peak significance

 $m(\gamma_1\gamma_2)$ full invariant mass distribution.

 $m(\gamma_1\gamma_2)$ invariant mass distribution with \measuredangle -cuts.

Estimation of top observables at FCC-ee

- Use official FCC-ee simulated samples of $\sqrt{s} = 365 \text{ GeV} \ e^+e^- \rightarrow \ t \bar{t} \rightarrow \ all$ collisions
- Focus on semileptonic and dileptonic decay on parton & reconstructed level

Semileptonic

- 1 isolated lepton $\ell \in [e, \mu]$ with $p_{\ell} > 20 \text{ GeV}$
- Missing energy
- Exactly 4 jets, 2 of them *b*-tagged (80% efficiency each)

Dileptonic

- 2 isolated leptons $\ell \in [e, \mu]$ with $p_{\ell} > 20 \text{ GeV}$
- Missing energy
- Exactly 2 jets, both *b*-tagged (80% efficiency each)

Reconstructing the dileptonic final state

- Ex. methods to fully reconstruct $t\bar{t}$ -system [4] \rightarrow only verified on generator-level
- Based on 4-momentum conservation: $P_0 = P_{\ell_1} + P_{\ell_2} + P_{\nu} + P_{\bar{\nu}} + P_{j_1} + P_{j_2}$, P_i : input 4-vector, $P_0 = (\sqrt{s}, 0, 0, 0)^{\top}$
- Not enough to fix six ν -momentum components: Minimisation w.r.t. m_t and m_W
- Generator-level: Event energy $\Sigma E_i = \sqrt{s_i} = 365 \text{ GeV}$ known \rightarrow Reproduce results

Reconstructing the dileptonic final state

- Ex. methods to fully reconstruct $t\bar{t}$ -system [4] \rightarrow only verified on generator-level
- Based on 4-momentum conservation: $P_0 = P_{\ell_1} + P_{\ell_2} + P_{\nu} + P_{\bar{\nu}} + P_{j_1} + P_{j_2}$, P_i : input 4-vector, $P_0 = (\sqrt{s}, 0, 0, 0)^{\top}$
- Not enough to fix six ν -momentum components: Minimisation w.r.t. m_t and m_W
- **Reco-level**: Event energy not known $\Sigma E_i \neq \sqrt{s_i}$, because ME $\neq E_{\nu_1} + E_{\nu_2}$

Reconstructing the dileptonic final state

- Reason for asymmetry: Total event energy not exactly determinable
- Cross-check: Cuts during reconstruction on ΣE remove asymmetries (left plot)
- Use event-wise knowledge: $P_0 = P_{\ell_1} + P_{\ell_2} + P_{ME} + P_{j_1} + P_{j_2}$
 - $\rightarrow \mbox{Asymmetry}$ gets worse, too less energy for reconstruction

Cuts on the total event energy.

Reco-level: Use accessible event energy for P_0 .

1

Reconstructing the dileptonic final state

- Ansatz: Find correlation between ME and $E_{\nu_1} + E_{\nu_2}$ with parton-level information
- Correct reconstructed ME with fitted dependence: $ME^{corr.} = p_0^{fit} \cdot ME^2 + p_1^{fit} \cdot ME + p_2^{fit}$
- Use corrected, event-wise knowledge: $P_0^{\text{corr.}} = P_{\ell_1} + P_{\ell_2} + P_{\text{ME}^{\text{corr.}}} + P_{j_1} + P_{j_2}$

Auverane

Reconstructing the dileptonic final state

- Ansatz: Find correlation between ME and $E_{\nu_1} + E_{\nu_2}$ with parton-level information
- Correct reconstructed ME with fitted dependence: $ME^{corr.} = p_0^{fit} \cdot ME^2 + p_1^{fit} \cdot ME + p_2^{fit}$
- Use corrected, event-wise knowledge: $P_0^{\text{corr.}} = P_{\ell_1} + P_{\ell_2} + P_{\text{ME}^{\text{corr.}}} + P_{i_1} + P_{i_2}$
- \rightarrow Does not lead to hoped improvements

Observables

- Examples: $\Delta y_{t\bar{t}}$ and $|\Delta \phi_{\ell\ell}|$ -distributions to extract A_{FB} and $A_{|\Delta \phi_{\ell\ell}|}$ resp.
- Distributions compared for MadGraph and FCC-ee samples on parton- and reco-level
- For MadGraph: No ISR and BES taken into account
- Prepare ground to draw similar conclusions as on generator level

 $\Delta y_{t\bar{t}}$ -distribution to compute A_{FB} .

 $|\Delta \phi_{\ell \ell}|$ -distribution.

10

. 6

0(C;

Summary: sensitivites from gradients

Gradient sensitivites in matrix and most sensitive observable per operator highlighted

- Several processes dominated by tt
 production
- Decay predominantly via *Wtb* vertex with O_{tW} and O⁽³⁾_{φq}
- Both: Composition of production and decay

1.7620.697 A_{FB} $\hat{\sigma}_{t\bar{t}}$ 0.00.0 $\sigma_{t\bar{t}b\bar{b}}$ 0.0 $\sigma_{t\bar{t}\ell\bar{\ell}}$ -10.0 $\sigma_{t\bar{t}+q/g}$ σ_t Γ, \overline{F}_{R}^{i} F_{I} -7.50.0 B_r 0.0-0.2830.440.00.00.00.6790.3770.038 $B'_{r'}$ 0.4350.402 $\begin{array}{c} B_{k}^{-} \\ B_{k}^{+} \\ C_{kk} \\ C_{rr} \\ C_{rk} \\ C_{nr} \\ C_{nr}$ 0.446-5.00.0 0.4050.646-2.5 $A^{--}_{I\Delta\phi}$ \mathcal{O}_{tZ} $\overline{\mathcal{O}_{\varphi q}^{(3)}}$ $\overline{\mathcal{O}_{\varphi q}^{(-)}}$ $\mathcal{O}_{\varphi t}$ $\mathcal{O}_{te}^{(1)}$ \mathcal{O}_{tG} \mathcal{O}_{tW} (1) (1) \mathcal{O}_{tl} \mathcal{O}_{ae}

 $\text{Orange fields}: \ \frac{\partial}{\partial C_i} \ O(C_i = 0) \cdot 10 < 10^{-4}$

2

Method II: Sensitivities from optimal observables

- Sensitivity follows as $S_{ii} = \frac{w_i^2}{w_{\rm SM}(\sigma_i^{\rm MG})^2} \sum_{m=1}^{n_{\rm bins}} \left(\frac{\mathrm{d}\sigma_i}{\mathrm{d}\Omega_m}\right)^2 / \frac{\mathrm{d}\sigma_{\rm SM}}{\mathrm{d}\Omega_m}$
 - Each dimension of the phase-space adds up information, but: curse of dimensionality
- Tradeoff between number of bins and number of entries, here: $N_{\text{bins}}/\text{dimension} = 5$ Here: Dimension-dependent evaluation for C_{tZ}

technische universität

dortmund

Collection of the OO-sensitivities S_{ii} for the different operators *i*.

Preliminary

Final state objects – semileptonic

■ Final state object resolution plots, showing x^{reco} - x^{parton}, x ∈ [E, p_x, p_y, p_z]
 ■ Here: t/t̄ and W[±]

Final state objects – semileptonic

Final state object resolution plots, showing x^{reco} − x^{parton}, x ∈ [E, p_x, p_y, p_z]
 Here: ℓ and ν_ℓ

Final state objects – semileptonic

■ Final state object resolution plots, showing x^{reco} - x^{parton}, x ∈ [E, p_x, p_y, p_z]
 ■ Here: light jets and b-jets

Final state objects – dileptonic

■ Final state object resolution plots, showing x^{reco} - x^{parton}, x ∈ [E, p_x, p_y, p_z]
 ■ Here: t/t̄ and W[±]

Final state objects – dileptonic

Final state object resolution plots, showing x^{reco} − x^{parton}, x ∈ [E, p_x, p_y, p_z]
 Here: l and ν_l

Final state objects – dileptonic

■ Final state object resolution plots, showing x^{reco} - x^{parton}, x ∈ [E, p_x, p_y, p_z]
 ■ Here: b-jets

