Preparations for CLIC CDR Chapter 2: Physics Potential

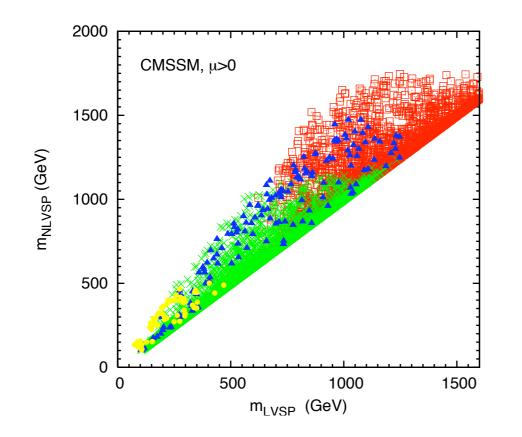
Supersymmetry

TH: S. Kraml and W. Porod Exp: M. Battaglia

CERN, II Jan 2011

Introduction

• Supersymmetry is one of the best-motivated BSM theories


- unified description of fermions and bosons, matter and force particles
- solution to the hierarchy problem
- unification of gauge couplings
- radiative electroweak symmetry breaking
- light Higgs boson (favoured by EWPO)
- dark matter candidate
- We expect SUSY at the TeV scale, within the reach of the LHC.
 - discovery and measurement of some states,
 typically gluinos, squarks, light gauginos (light sleptons?)
- To really test SUSY, we need precision measurements.
 - strong point of LC: electroweak states (sleptons and EW-inos) but more generally almost anything that is within kinematic reach.

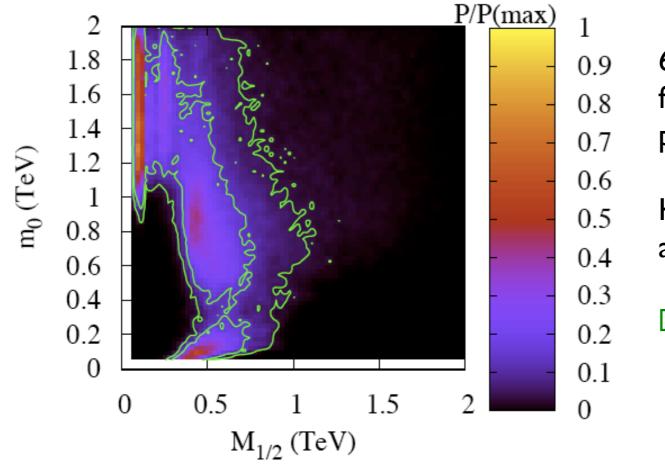
Need precision

- If weak-scale SUSY is realized, experiments at the LHC will discover some of the sparticles and provide first measurements of their masses and couplings; typical precision O(10%).
- However, to explore the theory fully, we need very accurate measurements of the whole spectrum:
 - test that there is a superpartner to each SM state
 - spin measurements
 - SUSY coupling relations
 - measure in particular the states that are relevant for EWSB
 - gauginos, higgsinos, 3rd generation squarks!
 - determine SUSY breaking parameters in a model-independent way
 - bottom-up reconstruction of the Lagangian
- Need a precision machine: e⁺e⁻ collider

Need phase space

 To explore the theory fully, we need very accurate measurements of the whole spectrum. (g-2)_µ prefers light SUSY, but overall SUSY may be O(TeV).

Masses of the lightest visible sparticle (LVSP) and next-to-lightest visible sparticle (NLVSP) in the CMSSM:


red: full model sample, blue: suitable CDM density, green: accessible to the LHC, yellow: amenable to direct DM detection

[Ellis et al., hep-ph/0408118]

 May well need an e⁺e⁻ machine in the multi-TeV regime: CLIC (NB: 3 TeV may not be enough)

Need phase space

update, nMSSM? To explore the theory fully, we need very accurate measurements of the whole spectrum. $(g-2)_{\mu}$ prefers light SUSY, but overall SUSY may be O(TeV).

68% and 95% probability contours from Bayesian fit with naturalness prior.

Highest probability in focus point and coannihilation regions

[Allanach, hep-ph/0601089]

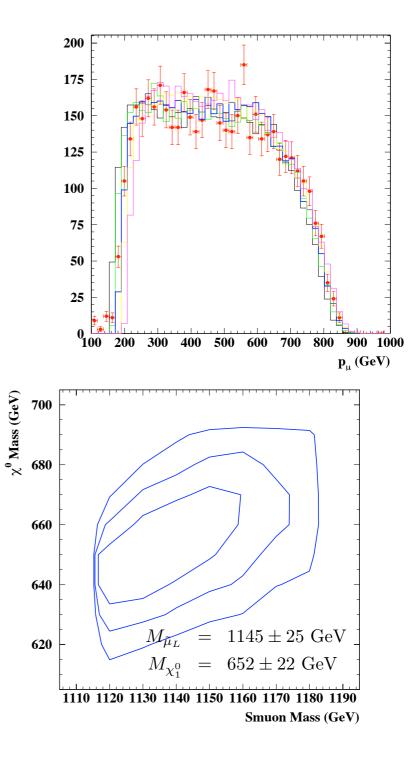
May well need an e^+e^- machine in the multi-TeV regime: CLIC (NB: 3 TeV may not be enough)

Sleptons

• Ex: smuon production and decay to the LSP.

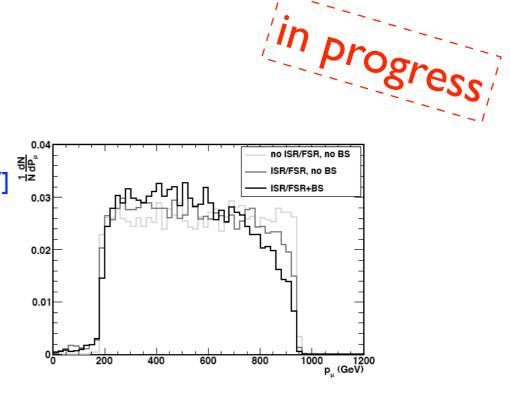
 $e^+e^-
ightarrow ilde{\mu}_L ilde{\mu}_L
ightarrow \mu^+ \chi_1^0 \mu^- \chi_1^0$

 If √s is significantly larger than twice the smuon mass, the decay muon energy spectrum has 2 clear endpoints


$$E_{\text{max/min}} = \frac{M_{\tilde{\mu}}}{2} \left(1 - \frac{M_{\chi_1^0}^2}{M_{\tilde{\mu}}^2} \right) \times \left(1 \pm \sqrt{1 - \frac{M_{\tilde{\mu}}^2}{E_{\text{beam}}^2}} \right)$$

• Main issue is beamstrahlung

Point H: $M_{\tilde{\mu}} = 1150 \text{ GeV}, M_{\chi_1^0} = 660 \text{ GeV}.$


$\delta p/p^2$	Beamstrahlung	Fit result (GeV)
0	none	1150 ± 10
3.0×10^{-5}	none	1150 ± 12
4.5×10^{-5}	none	1151 ± 12
4.5×10^{-5}	standard	1143 ± 18

Results of a one-parameter fit to the muon energy distribution for point H, for different assumptions on the $\delta p/p^2$ momentum resolution and the beamstrahlung spectrum. For an integrated luminosity of I ab⁻¹.

CERN-2004-005

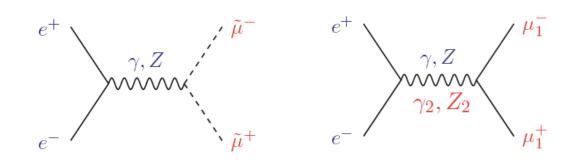
Sleptons

New study by Battaglia and Blaising [arXiv:1006.2547] $e^+e^- \rightarrow \tilde{\mu}_R \tilde{\mu}_R \rightarrow \mu^+ \chi_1^0 \mu^- \chi_1^0$

K' (m½=1300, m₀=1001, tanβ=46, Sign(µ)<0) $m_{ ilde{\mu}_R}=1108.8~{
m GeV},\,m_{\chi_1^0}=554.3~{
m GeV}$

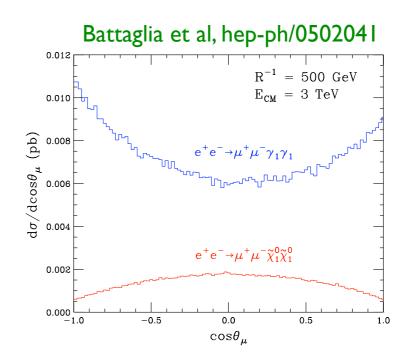
with 2 ab^{-1} int. lumi.

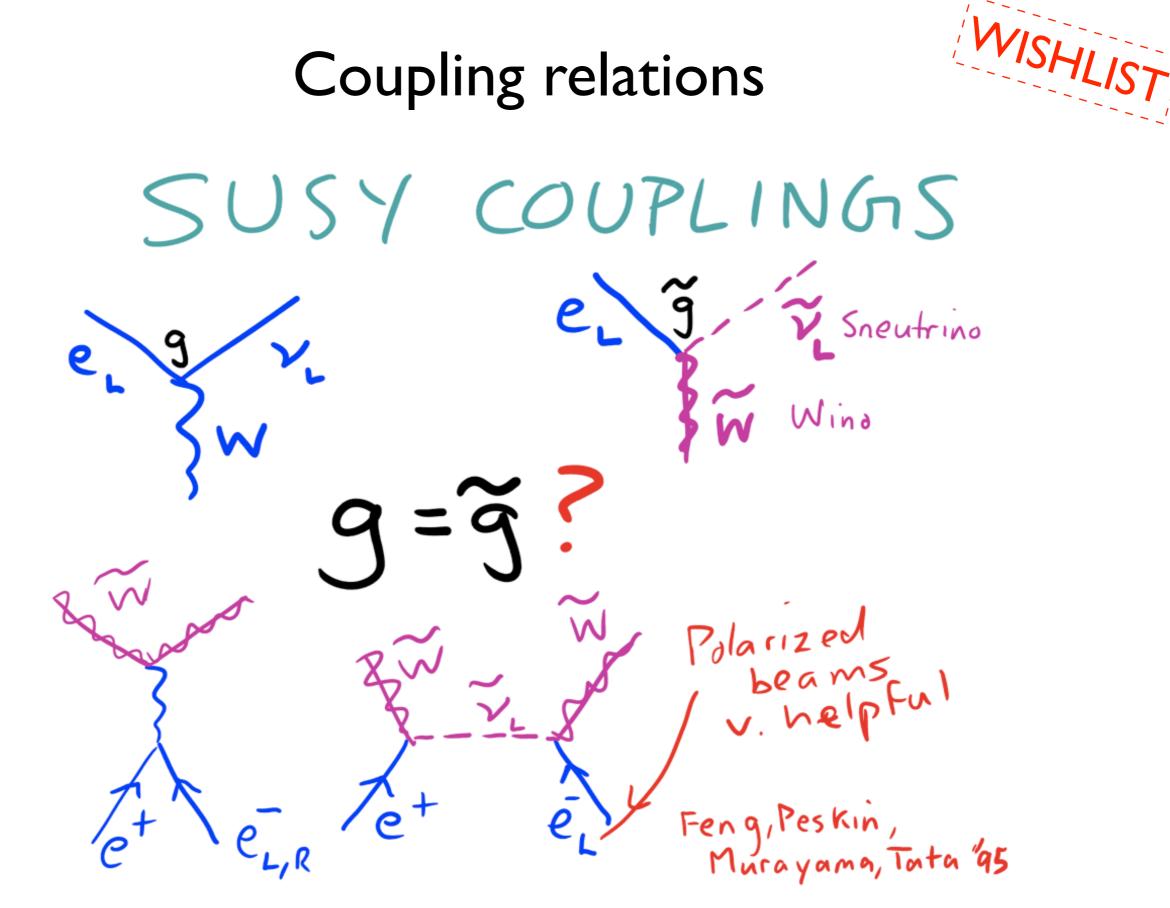
$\delta p_t/p_t^2$	$\sqrt{s} >$	Data	Pol	BX	$(M \pm \sigma_M)$	y) (GeV)
$(\times 10^{-5} \text{GeV}^{-1})$	(GeV)	Set	(e^{-}/e^{+})		$\tilde{\mu}_R^{\pm}$	$ ilde{\chi}_1^0$
0.	2950	S	0/0	0	1106.3 ± 2.9	558.8 ± 1.3
0.	2500	S	0/0	0	1098.8 ± 2.6	555.4 ± 1.2
0.	2500 (ISR only)	S	0/0	0	1109.2 ± 3.2	555.4 ± 1.2
0.	2500	S (No FSR Cor)	0/0	0	1095.3 ± 3.2	557.7 ± 1.3
2.	2500	S	0/0	0	1104.6 ± 2.9	560.0 ± 1.7
2.	2500	S (G4+Reco)	0/0	0	$1107.1{\pm}~2.8$	560.1 ± 1.5
4.	2500	S	0/0	0	$1102.8 {\pm}~2.9$	557.2 ± 2.8
6.	2500	S	0/0	0	1098.8 ± 3.1	559.1 ± 3.6
8.	2500	S	0/0	0	1101.0 ± 3.4	564.2 ± 4.0
20.	2500	S	0/0	0	1107.5 ± 4.2	575.7 ± 5.3
2.	2500	S+B (0.8)	0/0	0	1107.5 ± 15.5	542.5 ± 11.3
2.	2500	S+B (0.9)	0/0	0	1107.5 ± 14.4	551.2 ± 12.0
2.	2500	S+B (0.8)	80/ 0	0	1107.7 ± 8.7	542.6 ± 4.6
2.	2500	S+B (0.8)	80/60	0	1118 5 <u>± 6.1</u>	551.3 ± 3.0
2.	2500	S+B (0.8)	80/60	5	1105.7 ± 6.3	549.4 ± 3.9
2.	2500	S+B (0.8)	80/60	20	1113.2 ± 6.8	550.3 ± 3.4


<|%

 $\gamma\gamma \rightarrow$ hadrons per bunch crossing (BX)

Sleptons




- Include both left and right smuons $m_{\tilde{\mu}_R} < m_{\tilde{\mu}_L}$?
- Consistency check: sneutrino masses $\tilde{\nu}_{\mu} \rightarrow \mu^{\pm} \tilde{\chi}_{1}^{\mp} \rightarrow \mu^{\pm} W^{\mp} \tilde{\chi}_{1}^{0}$
- Scalar or fermionic partner? E.g. distinguish SUSY smuons from KK muons in UED

$$\left(\frac{d\sigma}{d\cos\theta} \right)_{SUSY} \sim 1 - \cos^2\theta.$$
$$\left(\frac{d\sigma}{d\cos\theta} \right)_{UED} \sim 1 + \cos^2\theta.$$

- Polarization, threshold curve?
- Same for selectrons? (check slepton mass universality, SUSY relations: t-channel prod.)

from R. Sundrum's plenary talk at the LC workshop

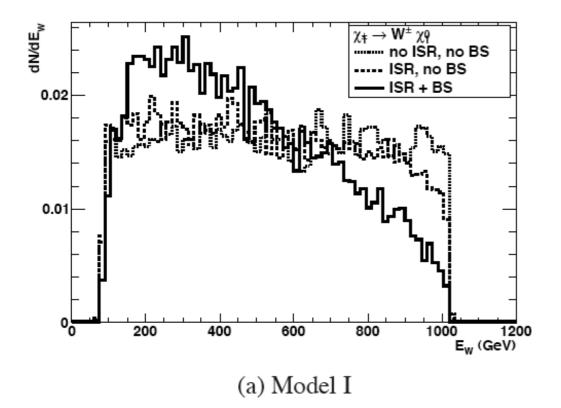
EW-inos (gauginos, higgsinos)

N.Alster and M. Battaglia

• 2 CMSSM benchmark points

Parameter	Model I	Model II
m_0 (GeV)	966	1001
$m_{1/2}$ (GeV)	800	1300
$\tan\beta$	51	46
A_0	0.	0.
$sgn(\mu)$	+	-
m_{top} (GeV)	173.3	175

Particle	Mass	Width	Mass	Width
	(GeV)	(GeV)	(GeV)	(GeV)
χ_1^0	340.3	-	554.3	-
χ_2^0	643.2	0.02	1064.2	0.04
χ_3^0	905.5	4.55	1407.2	6.75
χ_4^0	916.7	4.64	1413.8	6.85
χ_1^{\pm}	643.2	0.02	1064.3	0.04
χ^{\pm}_2	916.7	4.63	1413.7	8.08


- Model I: all EW-inos accessible at 3 TeV!
- Decays dominated by W, Z and h bosons

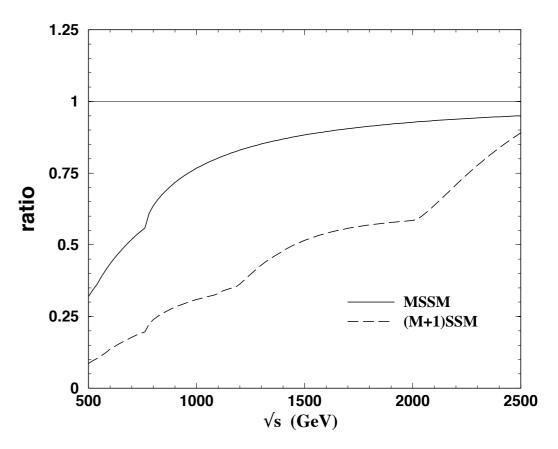
$$egin{array}{rcl} ilde{\chi}^0_2 & o h^0 ilde{\chi}^0_1 & \sim 90\% & ilde{\chi}^\pm_2 & o W^\pm ilde{\chi}^0_1 & \sim 12\% \ ilde{\chi}^\pm_1 & o W^\pm ilde{\chi}^0_1 & \sim 100\% & o W^\pm ilde{\chi}^0_2 & \sim 28\% \ ilde{\chi}^0_{3,4} & o W^\mp ilde{\chi}^\pm_1 & \sim 50\% & o Z^0 ilde{\chi}^\pm_1 & \sim 26\% \ ilde{\chi}^0_3 & o Z^0 ilde{\chi}^0_2 & \sim 23\% & o h^0 ilde{\chi}^\pm_1 & \sim 24\% \ ilde{\chi}^0_4 & o h^0 ilde{\chi}^0_2 & \sim 22\% \end{array}$$

EW-inos (gauginos, higgsinos)

N.Alster and M. Battaglia

- Complete reconstruction of neutralino system?
- Improvement if LSP mass known from slepton analysis?

Particle	Mass	No Rad	ISR	ISR+BS
1 diticie		100 Itaa	ISK	ISKIDS
	(GeV)			
Model I				
χ_1^{\pm}	643.2	± 0.91	± 1.39	± 2.09
Model II				
χ_1^\pm	1062.2	± 6.10	\pm 8.25	± 10.11
Particle	Mass	No Rad	ISR	ISR+BS
	(GeV)		~	
Model I				
χ_2^0	643.2	± 1.01	± 1.17	± 2.58
Model II				
χ_2^0	1064.2	±10.64	± 11.12	± 15.72
		-		
Particle	Mass	No Rad	ISR	ISR+BS
	(GeV)			
Model I				
χ_3^0	905.5	\pm 7.1	\pm 7.9	± 12.6
$\chi^0_3 \ \chi^0_4$	916.7	\pm 8.7	\pm 8.9	±13.0

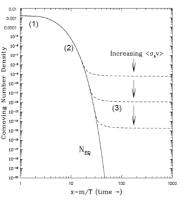

• Effect of beam polarization (and uncertainty on it)?

Minimal or non-minimal SUSY?

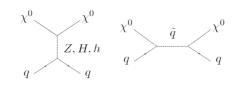
- WISHLIST
- An enlarged neutralino sector, as e.g. in the NMSSM, can be distinguished from the minimal case via
 - polarization dependence of the production cross sections
 - sum rules for the couplings
- The latter can be translated into sum rules for the associated cross sections. MSSM, asymptotically:

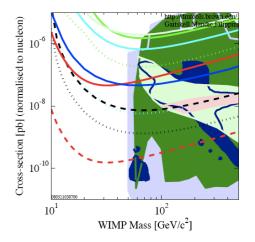
$$\lim_{s \to \infty} s \sum_{i \le j}^{4} \sigma\{ij\} = \frac{\pi \alpha^2}{48 c_W^4 s_W^4} \left[64 s_W^4 - 8 s_W^2 + 5 \right] \,.$$

- Beam polarization is important to enhance the prod. rates of neutralino pairs that otherwise have very very low Xsections.
- Need also $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ production from ISR photon spectrum.
- Analogous for charginos; e.g. test of extended gauge groups ...


The energy dependence of the sum of all the neutralino-pair production cross sections normalized to the asymptotic form of the summed cross section.

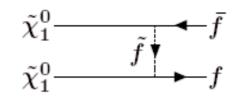
Choi, Kalinowski, Mortgat-Pick, Zerwas, hep-ph/0108117, hep-ph/0202039

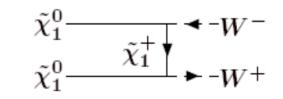

Dark matter

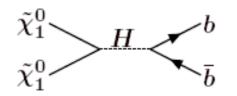


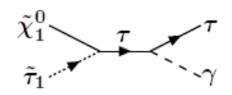
• A neutralino LSP is an excellent candidate for cold dark matter (WIMP!) Thermal relic from the Big Bang ... $\Omega h^2 \propto 1/\langle \sigma v \rangle$

- If we can measure the properties of the SUSY particles precisely enough, we can infer the LSP annihilation cross section:
 - = aim: "collider postdiction" of Ωh^2
 - compare with cosmological observations (test cosmological model?)
- ^o m_h.b-sγ formel co-annihilation region but region charged LSP Charged LSP
- We can also predict / compare to direct and indirect detection rates
 - direct detection: m_{χ} , $\sigma(\chi N)$, local density, velocity dist.
 - indirect det.: σv , m_X , density profile, propagation model
- Alternative SUSY DM candidates: gravitino, axion/axino, mixed sneutrino



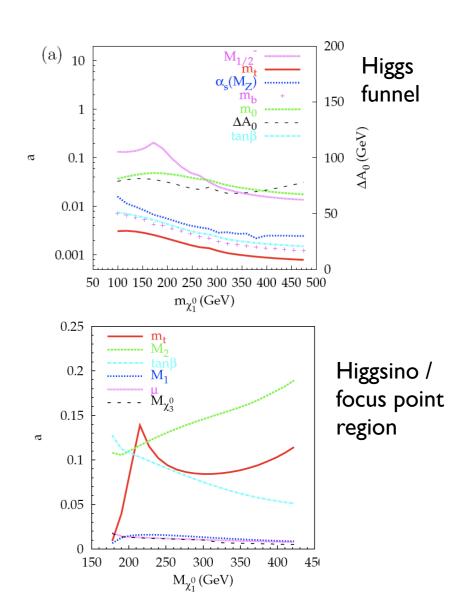

Inferring LSP DM properties


What do we need to measure?


- LSP mass and decomposition
 bino, wino, higgsino admixture (M₁, M₂, μ)
- Sfermion masses (bulk, coannhilation) or at least lower limits on them
- Itiggs masses and widths: h,H,A
- \mathbf{V} tan $\boldsymbol{\beta}$ (Yukawa couplings)

Required precisions investigated in, e.g. Allanach et al., hep-ph/0410091 Baltz et al., hep-ph/0602187

- ➡ Need (at least) %-level accuracies to match WMAP and evtl. PLANCK.
- Pure mass spectroscopy is not sufficient. Need measurements of couplings! Note also CPV case [Belanger et al., hep-ph/0604150 & 0803.2584]
- What can be achieved for CLIC benchmarks?


Inferring LSP DM properties

What do we need to measure?

- LSP mass and decomposition
 bino, wino, higgsino admixture (M₁, M₂, μ)
- Sfermion masses (bulk, coannhilation) or at least lower limits on them
- Itiggs masses and widths: h,H,A
- \mathbf{V} tan $\boldsymbol{\beta}$ (Yukawa couplings)

Required precisions investigated in, e.g. Allanach et al., hep-ph/0410091 Baltz et al., hep-ph/0602187

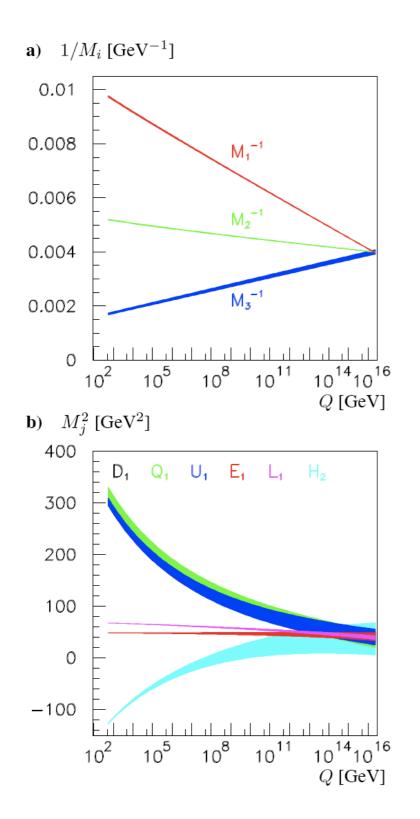
- ➡ Need (at least) %-level accuracies to match WMAP and evtl. PLANCK.
- Pure mass spectroscopy is not sufficient. Need measurements of couplings! Note also CPV case [Belanger et al., hep-ph/0604150 & 0803.2584]
- What can be achieved for CLIC benchmarks?

3rd generation and trilinear couplings

• Third generation is particularly interesting for electroweak symmetry breaking.

$$16\pi^2 \frac{d}{dt} m_{H_2}^2 = 6 |y_t|^2 \left(|A_t|^2 + m_{H_2}^2 + m_{Q_3}^2 + m_{U_3}^2 \right) - 6 g_2^2 |M_2|^2 + \dots ,$$

$$16\pi^2 \frac{d}{dt} B_\mu = 6 \,\mu \, A_t \, |y_t|^2 + 6 \,\mu \, M_2 \, g_2^2 + \dots$$

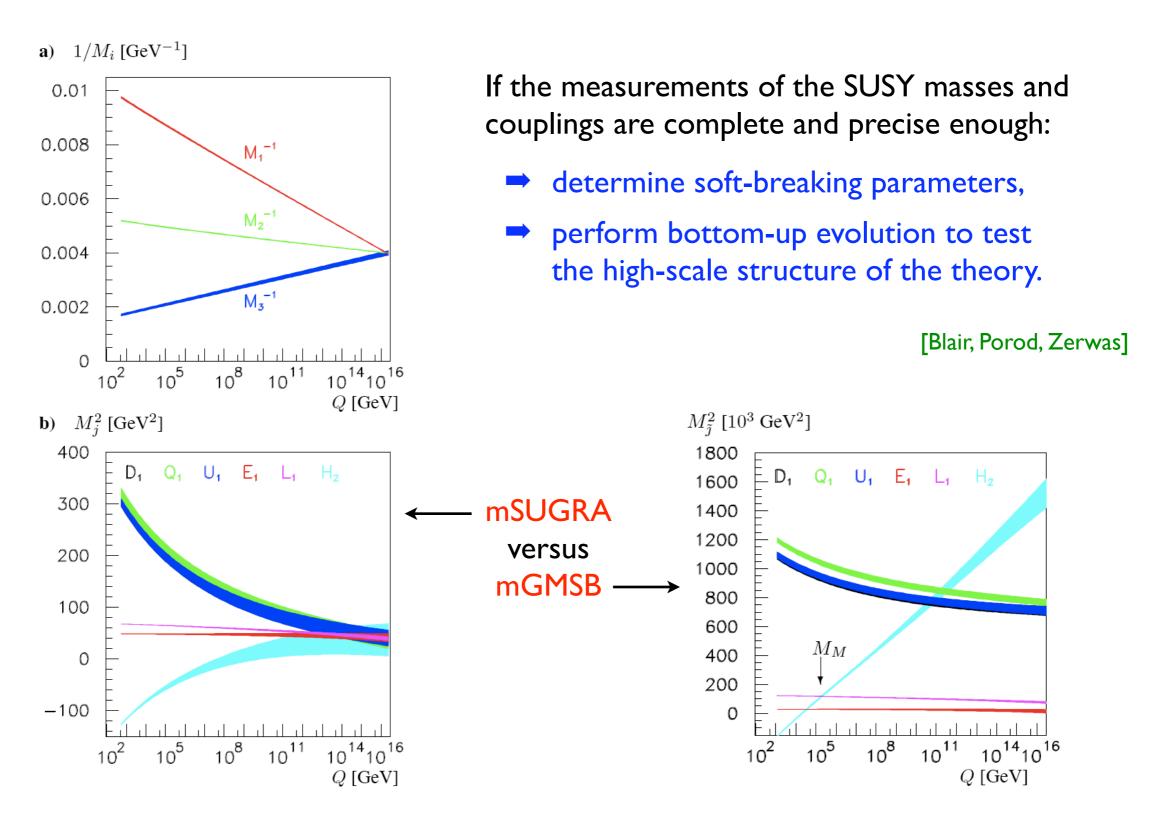

• Important radiative corrections to the light Higgs mass.

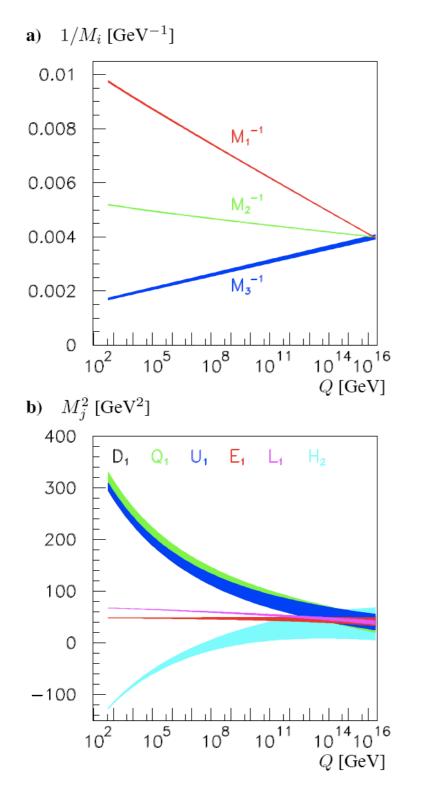
$$m_h^2 \lesssim m_Z^2 + \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[\ln\left(\frac{M_S^2}{m_t^2}\right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2}\right) \right] + \dots, \qquad \begin{array}{l} M_S^2 \equiv \frac{1}{2} \left(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2\right) \\ X_t \equiv A_t - \mu \cot \beta \,. \end{array}$$

1

- Stop sector may be disentangled by measurement of stop masses and mixing angle. $\Delta A_t \simeq$ few %
- Mixing in the sbottom/stau sector however dominated by $\mu \tan \beta$ $\tilde{b}_i, \tilde{\tau}_i \Rightarrow \Delta A_b, \Delta A_\tau \simeq$ order of magnitude
 - Need additional information besides masses and mixings

$$e^+e^- \rightarrow \tilde{ au}_i \tilde{ au}_j A^0 \Rightarrow |A_\tau \tan \beta|^2$$
 e.g. Datta, Djouadi, Kneur, hep-ph/0101353
 $\tilde{b}_2 \rightarrow \tilde{b}_1 A^0 \Rightarrow |A_b \tan \beta|^2$
 $A^0 \rightarrow \tilde{b}_2 \tilde{b}_1 \Rightarrow |A_b \tan \beta|^2$


If the measurements of the SUSY masses and couplings are complete and precise enough:


- determine soft-breaking parameters,
- perform bottom-up evolution to test the high-scale structure of the theory.

[Blair, Porod, Zerwas]

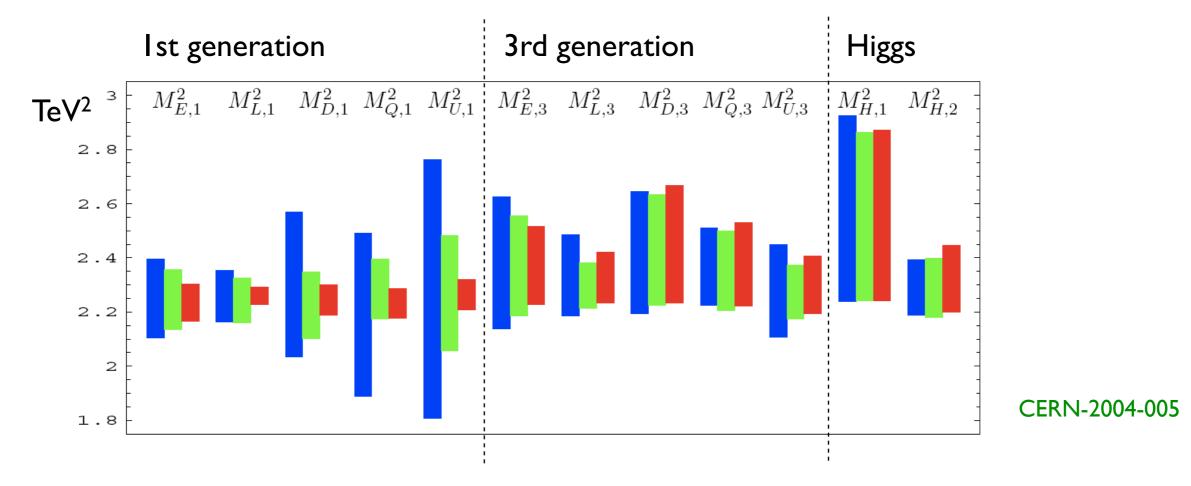
<u>Figs:</u> Evolution, from low to high scales, ofa) gaugino mass parameters,b) first-generation sfermion mass parameters

and the Higgs mass parameter m_{H2} for mSUGRA point SPSIa.



If the measurements of the SUSY masses and couplings are complete and precise enough:

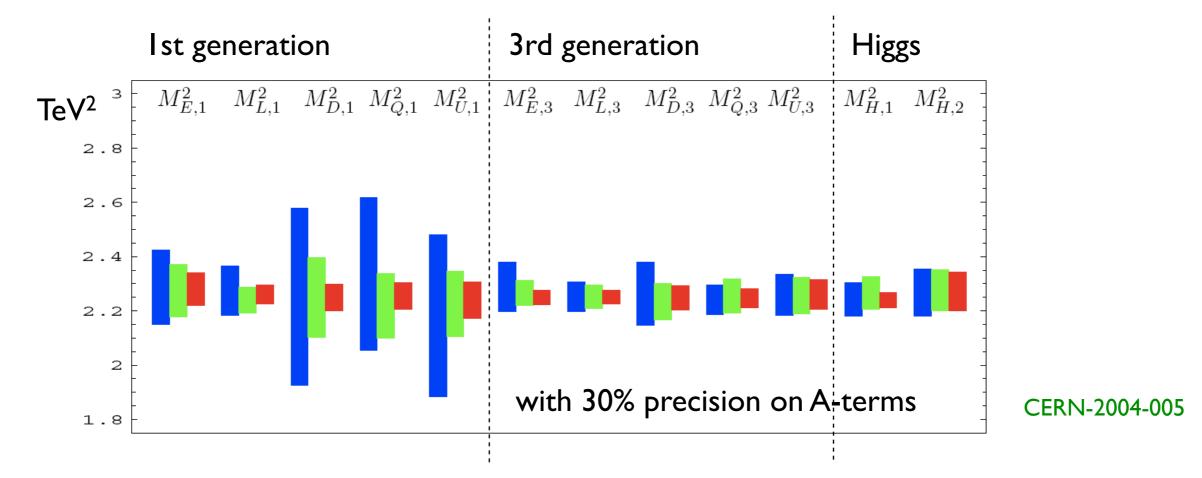
- determine soft-breaking parameters,
- perform bottom-up evolution to test the high-scale structure of the theory.


[Blair, Porod, Zerwas]

Pb: errors for 3rd gen. and Higgs soft terms much larger than for Ist/2nd generation

A-terms!

- knowledge of 3rd gen. and trilinear couplings is essential -



I σ error bars for scalar soft terms (in TeV²) at the GUT scale, assuming ILC precision on chargino/neutralino sector and 3% precision on gluino mass.

blue: 2% accuracy on slepton masses, 7% for remaining heavy particle masses; green: 2% accuracy on slepton masses, 3% for remaining heavy particle masses; red: all masses with 1% accuracy

Point E:
$$m_{1/2} = 300 \text{ GeV}, m_0 = 1.5 \text{ TeV}, A_0 = 0, \tan \beta = 10, \mu > 0.$$

- knowledge of 3rd gen. and trilinear couplings is essential -

I σ error bars for scalar soft terms (in TeV²) at the GUT scale, assuming ILC precision on chargino/neutralino sector and 3% precision on gluino mass.

blue: 2% accuracy on slepton masses, 7% for remaining heavy particle masses; green: 2% accuracy on slepton masses, 3% for remaining heavy particle masses; red: all masses with 1% accuracy

Point E:
$$m_{1/2} = 300$$
 GeV, $m_0 = 1.5$ TeV, $A_0 = 0$, $\tan \beta = 10$, $\mu > 0$.

Stops and bottoms

- Pb I: default benchmark point has too heavy stops/sbottoms
 - $egin{array}{lll} ilde{t}_1:1393~{
 m GeV},& ilde{b}_1:1544~{
 m GeV},\ ilde{t}_2:1598~{
 m GeV},& ilde{b}_2:1610~{
 m GeV}. \end{array}$

add new BM

• Pb 2: complicated decay modes, e.g., for model I

$ ilde{t}_1$	$ ightarrow t ilde{\chi}_1^0$: 15%	$ ilde{b}_1$	$ ightarrow b ilde{\chi}_2^0$:18%
	$ ightarrow t ilde{\chi}^0_{3,4}$: 34%		$ ightarrow b ilde{\chi}^0_{3,4}$: 20%
	$ ightarrow b ilde{\chi}_1^+$:14%		$ ightarrow t ilde{\chi}_1^-$: 32%
	$ ightarrow b ilde{\chi}_2^+$: 32%		$ ightarrow t ilde{\chi}_2^-$: 2 4%
$ ilde{t}_2$	$ ightarrow t ilde{\chi}_2^0$: 10%	$ ilde{b}_2$	$ ightarrow b ilde{\chi}^0_{3,4}$: 31%
	$ ightarrow t ilde{\chi}^0_{3,4}$:24%		$ ightarrow t ilde{\chi}_2^-$: 47%
	$ ightarrow b ilde{\chi}_1^+$:24%			
	$ ightarrow b ilde{\chi}_2^+$: 22%			

• multi W, Z, h events with additional b jets

Conclusions

- Progress: sleptons, neutralinos/charginos
- 2do: polarisation, DM studies, reconstruction of Lagrangian
- It would be important to show that CLIC could resolve a complete SUSY spectrum. The main difficulties here are
 - the number of possible channels and
 - irreducible SUSY-internal background

That may seem too much for the CDR (aim: show feasibility), but nevertheless it's essential for the physics potential.

- Need to discuss sector-wise reconstruction....
- Open issue: study of 3rd generation
- Please contribute!