Precision Measurements in the CLIC CDR

André H. Hoang, Klaus Mönig

Outline

- 1 Introduction
- 2 Gauge boson self couplings
- 3 Two fermion final states
- 4 Top production
- 5 QCD studies, event shapes

- Subject
- Physics interest (why interesting?)
- Processes
- Limits, comments
- Necessity for CLIC simulations

Introduction

Basic strong points of e+e- collisions

- Q variable (line shapes, threshold vs. continuum)
- Polarization (e- standard, e+ maybe, modify handedness of initial state)
- Relative easy to make theory progress (higher order calculations)
- Norm measurements possible (absolute scales)
- e-e- and YY options

Major issues to consider

- Beamstrahlung (scary!)
- Accuracy of Q, Lumi spectrum, reconstruction of c.m. frame
- Backgrounds
- Reliable rules for upscaling of ILC results (or new analyses?)
- "Precision" studies are time consuming (theory + experimental input)

Complementary to LHC

- LHC results/hints trigger optimized e+e- strategies (model-independent limits worse)
- CLIC covers LHC ranges

General comments

- Dedicated CLIC studies not yet available, resource: ILC studies
- Conclusions of upscaling can be case/model dependent
- Conclusions on necessity case/model dependent
- Full potential might not be uncovered

Gauge Boson Self Couplings

• Physics interest

- VVV, VVVV couplings (longitudinal modes) very sensitive to SSB mechanism
- Accurate measurements, relations of couplings and masses allow for conclusions on mechanism
- Only way to learn about SSB if Higgs is not found
- Triple (VVV) couplings
- Quartic (VVVV) couplings

VVV Triple Gauge Couplings

W-

 ΔK_{γ}

10

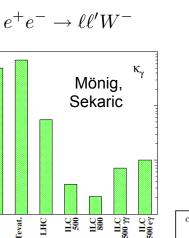
10

10

 $e^+e^- \rightarrow W^+W$ W^-

- LEP, Tevatron limits are typically few $\times 10^{-2}$
- ILC can improve them to few $\times 10^{-4}$
- \bullet CLIC should be able to go below 10^{-4}

Gauge cancellations grow with Q, statistics, use polarization


- Preliminary calculations show that e.g. SUSY loop corrections are well above 10^{-4}
- VV resonances should be visible as the J/Ψ is seen in e⁺e⁻

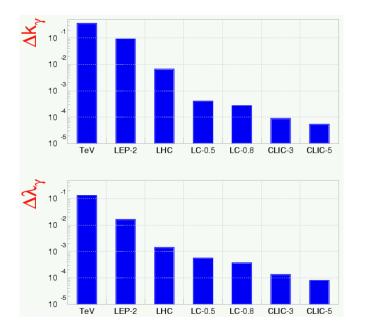
CLIC simulations desirable to obtain more reliable numbers (selection efficiencies, S/B, full correlation)

ĽE

Corresponding theory analyses also desirable.

Analysis: Anyone out there?

SM:
$$g_1^V = \kappa_V = 1$$


 $\mathcal{P}_{e^-}=80\%$ and $\mathcal{P}_{e^+}=60\%$ $\mathcal{L} = 500 \text{ fb}^{-1}$ $\mathcal{L} = 1000 \text{ fb}^{-1}$

coupling	error $\times 10^{-4}$		
	$\sqrt{s} = 500 \mathrm{GeV}$	$\sqrt{s} = 800 \mathrm{GeV}$	
$\Delta g_1^{ m Z}$	15.5	12.6	
$\Delta \kappa_{\gamma}$	3.3	1.9	
$egin{array}{c} \Delta g_1^{ m Z} \ \Delta \kappa_\gamma \ \lambda_\gamma \end{array}$	5.9	3.3	
$\Delta \kappa_{\mathrm{Z}}$	3.2	1.9	
$\lambda_{ m Z}$	6.7	3.0	
g_5^Z	16.5	14.4	
g_4^Z	45.9	18.3	
$\tilde{\kappa}_{\mathrm{Z}}$	39.0	14.3	
$ ilde{\lambda}_{ m Z}$	7.5	3.0	

Menges

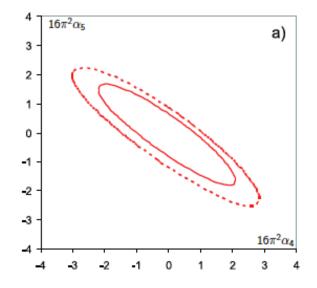
VVV Triple Gauge Couplings

\sqrt{s} (GeV)	Re $\Delta g_1^{ m L}$	Re $\Delta \kappa_{ m L}$	Re $\lambda_{ m L}$	${ m Re}g_5^{ m L}$	Re $\Delta g_1^{ m R}$	Re $\Delta\kappa_{ m R}$	Re $\lambda_{ m R}$	${ m Re}g_5^{ m R}$
500	2.6	0.85	0.59	2.0	10	2.4	3.6	6.7
800	1.6	0.35	0.24	1.4	6.2	0.92	1.8	4.8
3000	0.93	0.051	0.036	0.88	3.1	0.12	0.36	3.2
\sqrt{s} (GeV) R	Re $\Delta g_4^{ m L}$	Re $ ilde{\lambda}_{ extsf{L}}$	Re $ ilde{\kappa}_{ m L}$	Re $\Delta g_4^{ m R}$	$\mathbf{R}_{\mathbf{R}} ilde{\lambda}_{\mathbf{R}}$, Re ñ	R
50	00	2.5	0.60	2.7	10	3.8	11	
80	00	1.7	0.24	1.8	6.5	1.8	6.8	

CLIC: hep-ph/0412251

Statistical only, but full correlation accounted for

VVVV Quartic Gauge Couplings


 Quartic couplings parametrised in effective Lagrangian (model-independent, Higgs and no-Higgs)

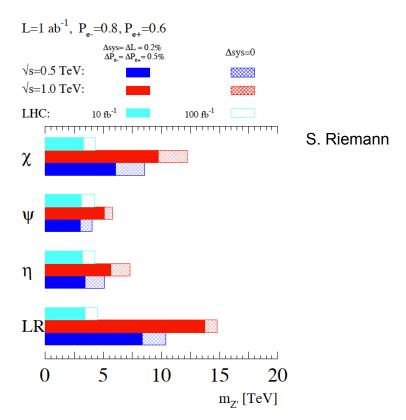
$$L_4 = \alpha_4 \operatorname{tr} \left(V_{\mu} V_{\nu} \right) \operatorname{tr} \left(V^{\mu} V^{\nu} \right) , \quad L_5 = \alpha_5 \operatorname{tr} \left(V_{\mu} V^{\mu} \right) \operatorname{tr} \left(V_{\nu} V^{\nu} \right)$$

- Processes: $e^+e^- \rightarrow VVV$ $e^+e^- \rightarrow \ell_1\ell_2VV$
- No-Higgs scenario @ 1 TeV:

Sensitivity to strong resonances up to 2 TeV. Sensitivity at the level of natural size of couplings. Marginal ! CLIC should be better at least by a factor 2.

Dedicated simulations analysis definitely needed. Analysis: Moenig, Kilian, Reuter (confirmed) 1000 fb⁻¹ at $\sqrt{s} = 1 \,\text{TeV}$

Beyer, Kilian, Krstonosic, Mönig, Reuter, Schmidt, Schröder

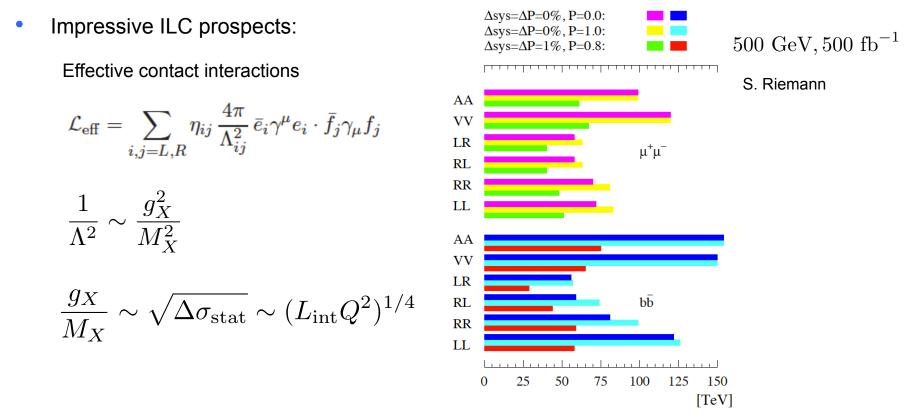

Two-Fermion Final States

 $e^+e^- \xrightarrow{\gamma, Z, Z'} f\bar{f}$

- Physics interest
 - Well understood final states
 - Very sensitive to any kind of new neutral weak gauge boson (GUTs, extra dimensions, Z⁴, ...) through interference
- Observables: total rates, angular distributions, F-B asym., polarization needed
- Impressive ILC prospects:

Z' mass reach: $\mathcal{O}(10 Q)$ Any final state useful.

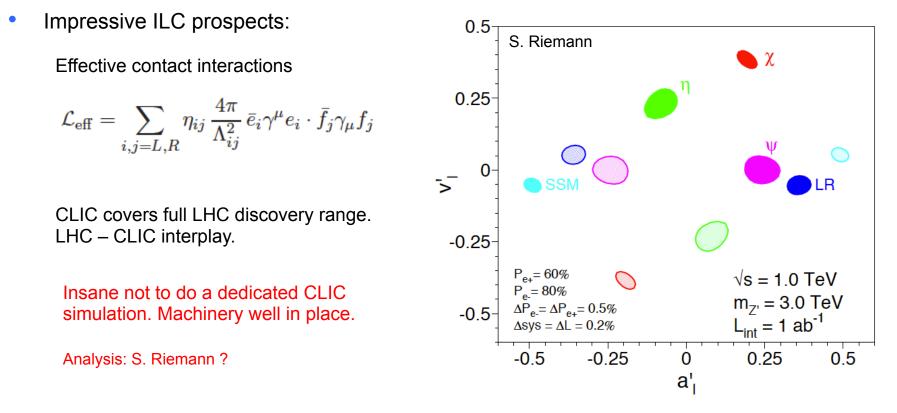
Z' spin from polarization dependence. (J. Hewett)



Two-Fermion Final States

 $e^+e^- \xrightarrow{\gamma, Z, Z'} f\bar{f}$

- Physics interest
 - Well understood final states
 - Very sensitive to any kind of new neutral weak gauge boson (GUTs, extra dimensions, Z⁴, ...) through interference
- Observables: total rates, angular distributions, F-B asym., polarization needed



Two-Fermion Final States

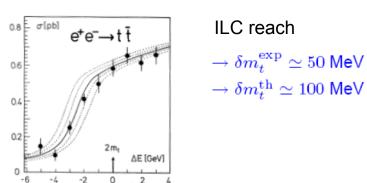
 $e^+e^- \xrightarrow{\gamma,Z,Z'} f\bar{f}$

• Physics interest

- Very sensitive to any kind of new neutral weak gauge boson (GUTs, extra dimensions, Z⁴, ...) through interference
- Observables: total rates, angular distributions, F-B asym., polarization needed

Top Production

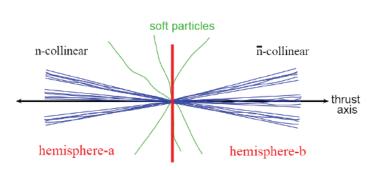
- Physics interest
 - Heaviest known particle with mass generated by SSB
 - top = top(SM) ?
 - mass input parameter for many other observables (SM+new physics)
 - Couplings can have large non-SM contributions
 - Study case for any heavy colored fermion (partly also scalar)
- Top Threshold (reminder)

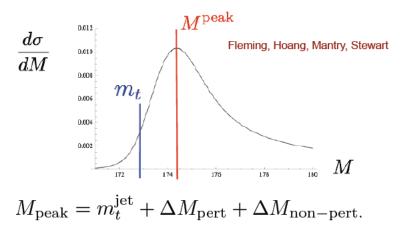

Threshold scan: mass, width, Yukawa

Study case for other NP thresholds (S- vs. P-wave).

Theory very well known.

Beamstrahlung(CLIC) >> Beamstrahlung(ILC) Shape information lost. Can CLIC do a Q scans in the first place?


Precision mass measurement more difficult than for ILC ! Analysis: How much sensitivity for CLIC ?



Top Production

- Top Invariant Mass Reconstruction
 - New theory approach (SCET): rigorous factorization involving heavy particles
 - Hemisphere invariant mass distribution
 - Event shapes (thrust, jet mass)
 - Expansion: m/Q << 1 (CLIC ideal)
 - Short-distance top mass measurement

Dedicated simulation analyses very desirable. (background, beam effects)

On the way (detector performance group): mass reconstruction (Pythia mass) CLIC @ 500 GeV \rightarrow 1-3 TeV

Analysis: F. Simon, K. Seidel, ...

Neutral current anomalous couplings

$$\begin{split} \Gamma^{\mu}_{t\bar{t}(\gamma,Z)} &= i\,e\,\,\left\{\gamma^{\mu}\,\left[F^{\gamma,Z}_{1V}\,+F^{\gamma,Z}_{1A}\,\gamma^{5}\right] + \frac{(\,\,p_{t}-p_{\bar{t}})^{\mu}}{2\,\,m_{t}}\,\left[F^{\gamma,Z}_{2V}\,+F^{\gamma,Z}_{2A}\,\gamma^{5}\right]\,\right\}\\ \text{SM:} \qquad F^{\gamma}_{1V} &= \frac{2}{3}\,,\,F^{Z}_{1V} = \frac{1}{4\sin\theta_{W}\cos\theta_{W}}\,\left(1 - \frac{8}{3}\sin^{2}\theta_{W}\right)\,,\,F^{Z}_{1A} = -\frac{1}{4\sin\theta_{W}\cos\theta_{W}}\,\left(1 - \frac{1}{3}\sin^{2}\theta_{W}\right)\,,\,F^{Z}_{1A} = -\frac{1}{4\sin\theta_{W}\cos\theta_{W}}\,\left(1 - \frac{1}{3}\sin^{2}\theta_{W}\right)\,,\,F^{Z}_{1A} = -\frac{1}{4\sin\theta_{W}\cos\theta_{W}}\,\left(1 - \frac{1}{3}\sin^{2}\theta_{W}\right)\,,\,F^{Z}_{1A} = -\frac{1}{4\sin\theta_{W}\cos\theta_{W}}\,\left(1 - \frac{1}{3}\sin^{2}\theta_{W}\right)\,,\,F^{Z}_{1A} = -\frac{1}{4}\sin^{2}\theta_{W}\,\left(1 - \frac{1}{3}\sin^{2}\theta_{W}\right)\,,$$

$$e^+e^- \to t\bar{t} \to \ell + \text{jet} + X$$

Angular distr., F-B asym., p_T distribution., polarization

ILC: 0.01 precision

CLIC: similar expectations (but coupling at higher scale)

Dedicated simulation desirable (with polarization). Theory input desirable (QCD corrections).

Analysis: ?.

Comparison: lepton + jets, p_T -distribution (1 σ limits)

coupling	LHC (300 fb $^{-1}$)	e^+e^- (snowmass)
$\Delta \widetilde{F}_{1V}^{\gamma}$	$+0.043 \\ -0.041$	$^{+0.047}_{-0.047}$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{1A}^{\gamma}$	$+0.051 \\ -0.048$	$^{+0.011}_{-0.011}$, 100 fb $^{-1}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	$+0.038 \\ -0.035$	$^{+0.038}_{-0.038}$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{2A}^{\gamma}$	$+0.16 \\ -0.17$	$^{+0.014}_{-0.014}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1V}$	$+0.34 \\ -0.72$	$^{+0.012}_{-0.012}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1A}$	$+0.079 \\ -0.091$	$^{+0.013}_{-0.013}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2V}$	$+0.26 \\ -0.34$	$^{+0.009}_{-0.009}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2A}$	$+0.35 \\ -0.35$	$^{+0.052}_{-0.052}$, 100 fb $^{-1}$

U. Bauer †

Top Production

Charged current couplings

$$\Gamma^{\mu}_{tbW} = -\frac{g}{\sqrt{2}} V_{tb} \left\{ \gamma^{\mu} \left[f_1^L P_L + f_1^R P_R \right] - \frac{i \sigma^{\mu\nu}}{M_W} (p_t - p_b)_{\nu} \left[f_2^L P_L + f_2^R P_R \right] \right\}$$

In top decays

ILC: 0.01 precision for f_2^R CLIC: similar expectations (?) Theory input desirable (QCD corrections).

Yang, hep-ph/0409351

Aguilar-Saavedra, hep-ph/0409342

Analysis: ?.

- Top FCNC's
 - Very sensitive to new physics.
 - Seems promising to optimized strategies (correlations)

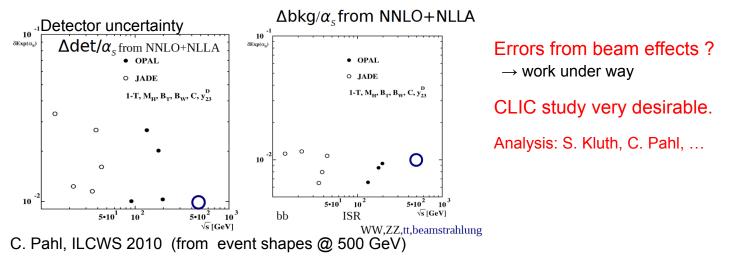
$$t \to qZ, q\gamma \quad \mathcal{O}(10^{-6} - 10^{-5})$$

ILC: from single-top w. polarization

Dedicated simulation desirable.

Analysis: ?.

$\sqrt{s}=500~{\rm GeV}$	SM	2HDM-III	MSSM	TC2
$\sigma(\gamma\gamma ightarrow tar{c})[{ m fb}]$	$\mathcal{O}(10^{-8})$	$\mathcal{O}(10^{-1})$	$\mathcal{O}(10^{-1})$	$\mathcal{O}(10)$
$\sigma(e\gamma ightarrow etar{c})[{ m fb}]$	$\mathcal{O}(10^{-9})$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(1)$
$\sigma(e^+e^- \rightarrow t \bar{c})$ [fb]	$\mathcal{O}(10^{-10})$	$\mathcal{O}(10^{-3})$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-1})$
Br(t ightarrow cg)	$\mathcal{O}(10^{-11})$	$\mathcal{O}(10^{-5})$	$\mathcal{O}(10^{-5})$	$O(10^{-4})$
Br(t ightarrow cZ)	$\mathcal{O}(10^{-13})$	$\mathcal{O}(10^{-6})$	$\mathcal{O}(10^{-7})$	$O(10^{-4})$
$Br(t ightarrow c \gamma)$	$\mathcal{O}(10^{-13})$	$\mathcal{O}(10^{-7})$	$\mathcal{O}(10^{-7})$	$O(10^{-6})$
Br(t ightarrow cH)	$< 10^{-13}$	$O(10^{-3})$	$\mathcal{O}(10^{-4})$	$O(10^{-1})$


wien wien

André H. Hoang

2nd CLIC CDR physics meeting 01/11/2011

QCD Studies, Jets

- Physics interest
 - Check for theory understanding of QCD
 - Also top quarks can be studied
 - Probes different scales (Q, Λ_{QCD} , $\sqrt{Q} \Lambda_{QCD}$, ...) \rightarrow nontrivial check of evolution
 - Strong coupling measurement
 - Non-perturbative effects small
 - Theory precision high (NNLO (classic), NNNLL (SCET)), certainly some further improvements
- Experimental issues
 - Background (WW)
 - Detector
 - Beam effects (particularly for event shapes, c.m. frame reconstruction)

