

Bunch Charge from Beam Position Monitor BCT Workshop

Steve Smith SLAC / CERN 12.01.2011

Beam Position Monitor (BPM)

- Fast
- Linear
 - Essentially no material properties
 - No mu
 - No epsilon
- But:
 - position-dependent
 - Difficult to establish calibration

Generic Stripline BPM

- Algorithm:
 - Measure amplitudes on 4 strips

$$Y = \frac{R}{2} \cdot \frac{V_U - V_D}{V_U + V_D}$$

• Resolution: $\frac{\sigma_V}{V} = 2\sqrt{2} \cdot \frac{\sigma_y}{R}$

Given: R = 11.5 mm and $\sigma_y < 2 \ \mu m$

Requires $\sigma_V/V_{peak} = 1/6000 \rightarrow 12$ effective bits

- Small difference in big numbers
- Calibration is crucial!

BPM as Charge Monitor

- Q ~ (Sum of 4 electrodes)
- Sum is position independent if:
 - 1. Electrodes all couple equally
 - 2. Channel gains are equal
 - Cable losses
 - electronic gains
 - ...
 - 3. Electrodes fully cover azimuth

Typical digital BPM processor Replace BPF with gaussian LPFs Perhaps use 240 Msample/sec ADC Process digitized waveform upstairs

Position Dependence due to Partial Coverage

Steve Smith

Model Stripline BPM

5% angular coverage per strip Radius 20 mm

4-electrode sum:

4th order in radius

+-12% error at R/2

→ < 1% at R/4 (!)

 $\sim \cos(4\theta)$ dependence

4th Order Correction

- But it is a position monitor!
- Estimate (X,Y) or (r, θ)
- Add an octopole term:

- Now error is < 1% at R/2
- **BCT Workshop**

Calibration

- Must calibrate relative gains of 4 buttons
- Can calibrate
 - RF source
 - With beam
 - Fit data of 2-D beam motion to 3 gain ratios
 - Up/Down
 - Left/Right
 - UpDown/LeftRight
 - 2-D beam motion from H,V pinger?

Calibration With RF Source

- Transmit calibration from one strip
- Measure ratio of couplings on adjacent striplines
- Repeat on other axis
- Gain ratio → BPM Offset
- Repeat between accelerator pulses