FBCT experience at Desy

Presenter: Matthias Werner, DESY

At CERN Workshop: "Improving the accuracy of the BCT measurements in the LHC" January 2011

About this presentation:

* This presentation consists mainly of information from our BCT expert Reinhard Neumann and shows developments of our former BCT expert Willi Radloff.

#I just present their results.

FBCTs used at DESY

Bergoz FBCTs e.g. for Petra accelerator for high bandwidth

Inhouse development (by W.Radloff) e.g. for FLASH and XFEL accelerator for low beam position dependence.

FBCTs with reduced beam position dependence

- Hereit The monitors are equipped with 4 symmetric coils to minimize beam position dependence.
- ₭ In the original design, each coil has 10 turns.
- In the actual design for FLASH, each coil has 1 turn and an RF transformer (w1/w2 = 1/10), resulting in increased bandwidth (in the order of 100 MHz) for optimized design, but decreased amplitude.
- Unconfirmed tests showed an amplitude change of ±0.3% for position changes of ±6 mm – this could be further improved by trimming.

Pickup and Electronics

Halfcore in PEEK-Carrier

Both Halfcores

Fully equipped beam transformer halfcores

Split Pickup Electrode

Transformer halfcores embedded in shielding halfcovers

Toroid *TTF2-* Dump

Complete, with cables, combiner and filter

Toroid in *TTF2 Linac*

Precision of BCTs at DESY

Info from Reinhard Neumann: \approx Up to now, a precision of $\approx 1\%$ (reproducibility, not absolute accuracy) of full range was achieved, this was enough for the Desy accelerators, so no further development was done to improve the precision.

What can affect precision and resolution of a BCT?

- Calibration method
- # Amplitude stability of signal processing chain
- Hereiter Hereiter
- Beam position dependence
- Baseline suppression: Take zero reference from bunch gap or before every bunch?
- H Lowpass filter directly after BCT or processing a high bandwidth signal?
- **#** Interference: symmetric or asymmetric data transmission?
- Signal processing principle: integrating over a window or sampling a filtered signal?
- Hoise in the signal processing chain: Amplifier, Integrator (if any), ADC
- Bigital processing algorithm

Thank you!

Transparencies beyond the presentation at the workshop

Hardware Schematics of the PC based Bunch Current Monitor

100 MHz Amplifier

Types of BCTs at DESY

Info from Reinhard Neumann:

Here a content of the second second

- BCT: Bergoz type (Spec: BW=2GHz, rise time 175 ps) only one coil
- Considerable position dependence observed
- Acquisition: Oscilloscope (8 bit resolution)
- **FLASH** accelerator (max. bunch frequency = 9 MHz):
 - △ BCT: "Radloff"-Type (selfmade with 4 coils)
 - Acquisition: VME ADC modules (14 bit, 2 samples per bunch)

Other accelerators and transport lines:

- △ BCT: "Radloff"-Type (selfmade with 4 coils)
- △ Acquisition: PC ADC boards

Impedance matching at BCT coil output

Number of turns on the toroid and Impedance ratio of successive RF transformers determines impedance matching.

% What is the source impedance of the coils?

For some termination, we get optimum amplitude, for maximum bandwith we need a lower termination resistance.

How what is the optimum for our case? (Especially important if resolution is limited by noise.)