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The Higgs boson discovery

After about 40 years of experimental efforts that involved 

several colliders, most notably the LEP (Large Electron-Positron 

collider at CERN), the Tevatron (proton-antiproton collider at 

Fermilab) and, finally, the specifically designed LHC proton-proton

collider, the discovery by the Atlas and CMS detectors of a new 

particle with a mass of about 125 GeV was announced in July 2012 

at CERN. It had, and still has (2022), all the required properties 
to be the predicted Higgs scalar boson. 

The prediction was based on a theoretical model, the Standard 
Model, whose construction itself also required four decades of 
theoretical effort. 



Higgs particle 
in the
4 e  channel



Higgs particle in 
the 4 muon  
channel (Atlas)



The fundamental particles after 2012

The Higgs boson, the unique 
fundamental scalar particle



The theoretical framework: a Quantum Field Theory

Following the birth of Quantum Mechanics (1925-1926) and 
Dirac’s equation (1928), construction of a first local relativistic quantum 
theory, Quantum Electrodynamics (QED) (1928-1949)

QED is a quantum field theory (QFT): A unified quantum
relativistic description of the interactions between charged particles 
(QED), requires including a quantized version of Maxwell’s theory, a 
classical field theory that describes the evolution of the electric and 
magnetic fields. 

A non-relativistic theory of individual point-like particles is very 
different from a field theory: Fields , unlike particles,  propagate an 
infinite number of degrees of freedom: the value of the field at each 
point in space.

Therefore, QFT’s have some unusual new properties.  



QED, the original sin: the problem of infinities
Formal construction of a QFT (Heisenberg-Pauli 1930). Then, 4 years for a first 
correct calculation of a quantum correction (Weisskopf 1934) because

(i) QED is an Abelian gauge theory: since one dynamical field is the vector 
potential, this necessitates gauge fixing, a non-trivial issue.

(ii) A non-relativistic perturbation theory was used.

(iii) At first, the role of the negative energy states in Dirac equation was 

unclear (later interpreted as positrons, discovered by Anderson (1932)).

Finally, a clear outcome: The result was divergent (short distance (UV) 

singularities or, equivalently, large momentum divergences). 

All proposed solutions to the problem involved sacrificing locality 

(point-like particles and contact interactions) difficult for a relativistic 

theory or some basic law of physics like unitary (conservation of 

probabilities).



QED: the miracle of renormalization
1947 Shelter Island conference: Measurements of the Lambshift (Lamb

and Retherford) and of the anomalous moment of the electron (Rabi group) 

reported.

Approximate calculation by Bethe, based on subtracting infinities, gives 
a result close to the Lambshift experimental value.

In two years, Feynman, Schwinger, Tomanaga, Dyson develop the rules

of relativistic perturbation theory and  renormalization theory: 

(1) Artificial and non-physical modification (regularization) of the theory at 
short distance or at a large energy-momentum scale L (called cut-off).

(2) Perturbative calculation of physical quantities. 

(3) Renormalization of fields and elimination of the  parameters of the initial 
Lagrangian in favour of direct relations between physical observables.



QED: a renormalizable QFT

Remarkably enough, in QED, in the relations between physical observables 

the infinities of perturbation theory  cancel, the infinite L limit is finite and 

universal or short distance insensitive (i.e., independent of the specific 

modification at scale L).

A QFT sharing this property is called renormalizable.

Only a limited class of QFTs are renormalizable: this focused the search for 

new QFTs to describe also weak and strong interactions. 

Two remarks: 

(1) The cancellation of infinities is perturbative: it occurs within the expansion in 
powers of the fine structure constant a. 

(2) Renormalization requires tuning  all parameters of the Lagrangian as 

functions of the cut-off L, which is extremely strange.



After QED, construction of a  
renormalizable QFT unifying, to some 
extent,  weak and electromagnetic 
interactions (1950-1974)



Towards a combined model for weak and                                                                                  
electromagnetic interactions

Quantum Electrodynamics (QED) is characterized by an Abelian gauge 
symmetry: Invariance under local (in space-time) phase transformations. 

Gauge symmetry seems to imply the existence of  massless vector particles 
(the photon in QED) associated with the gauge field.

Weak interactions (generating the weak nuclear force) can be described, 
at low energy, by charged current-current contact (i.e., local) non-
renormalizable interactions. 

Such interactions could be explained by the exchange of two very massive 
vector fields. 

A gauge theory with at least two additional vector fields implies a
generalization of QED to non-Abelian gauge symmetries.
However, a major problem: find a gauge symmetric mechanism to give

masses to gauge bosons.



Spontaneous symmetry breaking (SSB)

The mechanism to give masses to gauge fields is based on SSB, an 
idea coming from statistical physics and the theory of phase 
transitions. A general framework was provided by Landau (1937).

In the case of continuous symmetries, in non-gauge theories, SSB 
implies the presence of massless scalar particles (Nambu-Goldstone 
bosons).

In the context of low energy hadron physics, the notion of SSB
was initially introduced in the form of an approximate SU(2)XSU(2) 
chiral symmetry (1960-1962):

pions, due to their relative small mass, can be considered as 
almost massless Goldstone bosons



Phase transition and SSB: disordered phase 

Energy surface:
symmetric minimum, 

the example of O(2) 
symmetry

Invariance under rotations around the vertical axis implies that, 
the minimum of the energy surface, when it is unique, is located 
here at the origin because it is an invariant point.



Phase transition and SSB: ordered phase

Energy surface:  
degenerate minima, 
the example of O(2) 
symmetry 

Invariance under rotations around the vertical axis implies that 
the energy surface has a circle of minima. Goldstone modes 
correspond to the flat direction in the circle of minima.



Renormalization with SSB

The straightforward perturbative expansion contains infinities 
that have to be removed by renormalization.

The renormalization constants in the symmetric phase and the 
broken phase are the same: the proof of the property is not so simple 
because in the spontaneously broken phase the perturbative expansion 
is no longer explicitly symmetric.

The proof involves proving generalized Ward-Takahashi identities 
and was reported, for non-gauge theories, in

B.W. Lee, Renormalization of the sigma-model, Nuclear Physics B9 
(1969)    649-672;

K. Symanzik, Renormalizable Models with Simple Symmetry 
Breaking, Commun. Math. Phys. 16 (1970) 48-80.



Non-Abelian gauge theories

The classical non-Abelian, extension of Maxwell’s 
electrodynamics, was formulated in

C.N. Yang and R.L. Mills, Conservation of Isotopic Spin and 
Isotopic Gauge Invariance, Phys. Rev. 96 (1954) 191-195.

Gauge symmetry is implemented by demanding invariance under 
non-Abelian (non-commutative), space-time dependent group 
transformations.

Massless  vector bosons, associated to all group generators, are 
predicted.

But the quantization of such a theory is not a simple extension 
of the quantization of QED, as pointed out by

R.P. Feynman, Quantum theory of gravitation, Acta Phys. Polon. 
24 (1963) 697.  



Gauge symmetry and SSB: the Higgs mechanism

A combination of SSB and gauge symmetry makes it possible, for a 

suitable choice of a scalar field representation, to give masses to 

gauge fields and eliminate the unwanted massless Goldstone bosons. 

This is now called the Higgs mechanism.

A model for the combined weak and electromagnetic interactions 
can then be constructed: the gauge group is G=SU(2)XU(1), 

spontaneously broken down to H=U(1) by the non-vanishing expectation 

value of a 4-component scalar field. 

Three massless Goldstone bosons  are generally expected. 

Here, they decouple while three corresponding gauge fields (W+-, Z) 

become massive as can be shown by a gauge transformation. A

massive scalar survives, the Higgs boson, and a massless photon.



The classical Higgs mechanism

The possibility of a classical `Higgs mechanism' is  stressed in

P.W. Higgs, Broken symmetries, massless particles and gauge fields, 
Phys. Lett. 12 (1964) 132-133; Broken symmetries and the masses of gauge 
bosons, Phys. Rev. Lett. 13 (1964) 508-509

F. Englert and R. Brout, Broken symmetry and the mass of vector

bosons, Phys. Rev. Lett. 13 (1964) 321-323,

G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Conservation laws and 
massless particles, Phys. Rev. Lett. 13 (1964) 585-587.

The general framework is linearized classical field equations for coupled 
gauge and scalar fields.



Classical Abelian (Ginzburg-Landau)-Higgs  
mechanism and superconductivity 

To describe a superconductor in a magnetic field, 

Ginzburg, V. L. and Landau, L. D., On the Theory of 
Superconductivity, J.E.T.P. 20, 1064 (1950),

had  already introduced the classical Abelian Higgs mechanism. They 
showed that SSB can give a mass to an Abelian gauge field (here the 
vector potential associated to the magnetic field) without 
generating a massless scalar. 

In P.W. Anderson, Plasmons, Gauge Invariance  and Mass, Phys. 
Rev. 130 (1963) 439-442, 

the example of superconductivity  is again stressed but the classical 
proof is incomplete.. 



The relativistic Higgs mechanism

P.W. Higgs, Spontaneous Symmetry Breakdown without Massless 
Bosons, Phys. Rev. 145 (1966) 1156-1163.

It is shown, in the classical approximation, that after SSB in an 
Abelian QED-like theory with a charged scalar field, a gauge transformation 
can  transform the initial Lagrangian into a Lagrangian with only physical 
degrees of freedom, i.e., a massive `Higgs' field and a massive vector field.  

This more physical representation is often called   `unitary gauge' but 
leads to non-renormalizable field theories. 

In the article, it is also shown that the results still hold for the 
leading quantum corrections, in a specific gauge.

The argument is generalized to a non-Abelian classical gauge theory in

T.W.B. Kibble, Symmetry Breaking in Non-Abelian Gauge Theories, 
Phys. Rev. 155 (1967) 1554-1561.



Non-Abelian gauge theories: quantization

The solution of the very difficult quantization problem was finally 
reported in 1967 in

L.D. Faddeev and V.N. Popov, Feynman diagrams for the Yang-
Mills field, Phys. Lett. 25B (1967) 29-30; Perturbation theory for 
gauge-invariant fields, Kiev report No. ITP 67-36.

See also

B. DeWitt, Quantum theory of gravity II, III, Phys. Rev. 162 
(1967) 1195-1239; ibidem,   1239-1256.

The construction relies on field integral and functional techniques.



Towards renormalization and unitarity

Two articles immediately triggered a large theoretical activity

G. 't Hooft, Renormalization of massless Yang-Mills fields, Nucl. 
Phys. B35 (1971) 173-199.

G. 't Hooft, Renormalizable Lagrangians for massive Yang-Mills, 
Nucl. Phys. B35 (1971) 167-188,

where it is argued that some models based on non-

Abelian gauge theories, both in the symmetric phase 

and in the case of spontaneous symmetry breaking, 

could be renormalizable.



Abelian Higgs model: Full quantum theory and 
renormalization

Motivated by ’t Hooft’s work, Lee proves rigorously to all 
orders in perturbation theory that the Abelian Higgs model is 
renormalizable, that it contains no massless scalar boson but 
instead a massive scalar field and a massive vector field and 
satisfies unitarity :

B.W. Lee, Renormalizable Massive Vector-Meson Theory-
Perturbation Theory of the Higgs Phenomenon, Phys. Rev. D5 
(1972) 823-835.

This article also seems to be at the origin of the 
denominations “Higgs mechanism” and “Higgs boson”.



Toward a combined model for weak and
electromagnetic interactions
The Higgs mechanism  contains two ingredients: 

masses given to vector (gauge) fields and absence (or decoupling) of 
massless scalar (Nambu-Goldstone) bosons.

In gauge theories, due to the necessity of gauge fixing, an additional 
step is required, the proof of unitarity (and thus conservation of 
probabilities). 

The non-Abelian case is especially involved because quantization 
generates additional non-physical spinless fermions (`Faddeev–Popov 
ghosts’).
One has to prove that, even after renormalization, the contributions of both 
Goldstone bosons and  spinless fermions cancel in physical observables.

Only when this program is completed, can perturbative calculations  
safely be performed.



Non-Abelian gauge theories: Renormalization
and Unitarity

The first complete proofs of renormalizability rely on a set of 

generalized Ward–Takahashi identities derived in

A.A. Slavnov, Ward identities in gauge theories, Theor. Math. Phys. 10 
(1972) 99-107; J.C. Taylor, Ward identities, Nucl. Phys. B33 (1971) 436-
444.

They are used to prove renormalizability and unitarity of non-
Abelian gauge theories in the broken phase in

B.W. Lee and J. Zinn-Justin, Spontaneously broken gauge symmetries, 

I,II, III, Phys. Rev. D5 (1972) 3121-3137, 3137-3155, 3155-3160;

ibidem, Spontaneously broken gauge symmetries, IV General gauge 
formulation, Phys. Rev. D7 (1973) 1049-1056.



Non-Abelian gauge theories: Renormalization
and Unitarity

The complexity of these initial proofs is a consequence of
gauge fixing and spontaneous symmetry breaking, which completely 
destroy the beautiful geometric simplicity of the initial Lagrangian, 
leading to the appearance of a non-local contribution (from the
Faddeev-Popov determinant) and non-physical particles, the would-

be Goldstone bosons .

Also relevant are articles by Fradkin and Tyutin, ‘t Hooft and 
Veltman, Fujukawa, Lee and Sanda, Ross and Taylor…



BRST symmetry

After introduction of non-physical spinless fermions 
`(Faddeev-Popov ghosts’) to represent the Faddeev-Popov 
determinant, the quantized gauge action becomes local and has an 
unexpected fermion-like symmetry now called BRST symmetry: 

C. Becchi, A. Rouet and R. Stora,  The Abelian Higgs-Kibble 

Model. Unitarity of the S Operator,  Phys. Lett 52B (1974) 344; 

ibidem, Renormalization of the Abelian Higgs-Kibble Model, Comm. 

Math. Phys. 42 (1975) 127; ibidem, Renormalization of gauge 

theories, Ann. Phys. (NY) 98 (1976) 287-321.}

I. Tyutin,  Preprint of Lebedev Physical Institute, 39  (1975).



General proof and ZJ equation

This symmetry has been used to give a completely general, much
more transparent, proof of renormalizability, gauge independence and 
unitarity covering all semi-simple groups, renormalizable gauges..., 
based on a general master equation (called Zinn-Justin equation by 
Weinberg):

J. Zinn-Justin  (1975),   Renormalization of gauge theories, Bonn 
lectures 1974, Trends in Elementary Particle Physics, Lecture Notes in 
Physics 37 pages 1-39, H. Rollnik and K. Dietz eds., Springer Verlag, 
Berlin; 

Functional and probabilistic methods in quantum field theory,  
Acta Universitatis Wratislaviensis 368 (1976)  435-453, Saclay 
preprint T 76/048.



The effective field theory (EFT) viewpoint: 
Emergence of renormalizable field theories and RG

The EFT viewpoint is inspired by the theory of critical 

Phenomena in statistical physics: 

An initial finite, non-local theory exists at very high 

energy (or momentum) equivalent at lower energies to an infinite 

sum of local interactions with parameters generically of order 1. 

Due to a perturbative RG flow, at even lower energies, non-
renormalizable interactions decay like powers of the scale ratio 
and become negligible, renormalizable interactions vary 

logarithmically and survive, super-renormalizable interactions and 

mass terms increase like powers and eventually become problems.



The EFT viewpoint: triviality issue and fine tuning 
problem

Some consequences are:

In IR free theories like QED, interactions vanish if one 

insists taking the infinite cut-off limit (the triviality  issue).  In 

the EFT viewpoint, this is no longer a problem because the cut-
off is large but remains finite and QED is valid only much below 
this large cut-off scale.

The effective interaction become small logarithmically at 
low energy, which is consistent with the small value of a.

However, in the Standard Model of particle physics, the

fine-tuning of the coefficient of the Higgs mass term becomes a 

real concern. 



EFT, RG flow fixed line and consistency limit

Depending, on the physical value of the Higgs top mass ratio, if it is too 
far from the fixed line, one may either be in a situation where the 
initial (large momentum) value of the fermion-boson coupling is 

unnaturally small, or one finds a scale at 

which the model becomes inconsistent 

since the Higgs self-coupling vanishes. In 

both cases new physics is required. 

Calculations (e.g. Degrassi et al 2012) 

seem to indicate  that the second scenario is more 

is more plausible. However, the Higgs mass

is such that the energy scale is at least 

1010 GeV !



The EFT viewpoint: Fine tuning problem

RG arguments, based on the desert hypothesis, suggest that the 
Higgs and top masses are such that the Standard Model could be 
consistent up to 1010 GeV. However, this leads to a fantastic fine-
tuning problem:

f = 3(L/mHiggs c2 )2/8p2  1015

Since until now no new particles has been found at the LHC below 
about 1 TeV in many channels and 2 TeV in some, for a Higgs mass of 
125 GeV/c2,  the amount of fine-tuning is probably still acceptable.

f = (L/mHiggs c2 )2  O(100)

For a possible Future Circular hadron Collider with energy up to 100 
TeV,  without new physics, the fine-tuning factor would reach up to at 
least f=O(10^4), which would be much harder to accept.



Higgs boson mass, the fine-tuning problem and 
supersymmetry

Before LHC, a proposal for solving the fine-tuning problem was 
based on supersymmetry: the super-partners of known particles 
cancel (to a large extent because SUSY is broken) the contributions 
of known particles.

Unfortunately, no super-particles has been discovered yet up 
to masses between 500 Gev and more than 2 TeV, depending on 
channels.

For example, due to the strong coupling of Higgs and top, tops 
give a large contribution, which was supposed to be cancelled by 
their superparners, the stops (scalars). However, mstop > 500 GeV 
(assuming the simplest SUSY models) while mtop= 173 GeV, which 
yields a factor 8 in contribution.


