

Present and Future of the Higgs Boson

- Part 1: What we have learned since the discovery (Henri Bachacou)
- Part 2: What we hope to learn at High-Luminosity LHC and beyond (Christophe Ochando)
- Part 3: Detector challenges at High-Luminosity LHC and beyond (Laurent Serin)

Part 1 What we have learned since the discovery of the Higgs Boson

Henri Bachacou

LHC timeline in the past decade

- Run 1: 2011 at 7 TeV and 2012 at 8 TeV
 - Discovery with 2011 and part of 2012 data
- Run 2: 2015-2018 at 13 TeV.
 - → Higher center-of-mass energy and luminosity
 → a much larger dataset allowing to study
 the Higgs boson in great detail.

The Discovery Channels Past and Present

Today (Run 2 data) -

- The Higgs boson was first observed in:
 - The Diphoton channel (H→yy)
 - The 4-lepton channel (H→ZZ→4I)

At the time of discovery (2012) -

thousands of diphoton Higgs candidates

The Discovery Channels Past and Present

- The Higgs boson was first observed in:
 - The Diphoton channel (H→yy)
 - The 4-lepton channel (H→ZZ→4I)

At the time of discovery (2012)

Today (Run 2 data)

- LHC Run 2 offers much larger Higgs samples:
 - thousands of diphoton Higgs candidates
 - hundreds of 4-lepton Higgs candidates (with an excellent signal-over-background)
 - and much more...

What we would like to know about the Higgs boson

- Is it really the Higgs boson?
 - Does it interact with the other Standard Model particles as expected?
 - With the W and Z vector of the weak force
 - With the fermions (quarks & leptons) proportionally to their mass
 - Is it a scalar (spin-0) elementary particle?
- Are there other Higgs bosons?
 - Some models (e.g. Supersymmetry) predict the existence of several Higgs bosons.
- Does the Higgs boson interact with non-Standard Model particles (e.g. Dark Matter)?

Higgs Production and Decay

Production Mechanisms:

Each production and each decay tells us something about the interaction (coupling) between the Higgs and the other particles of the Standard Model

Higgs Production and Decay

Production Mechanisms:

W/Z γ/Z b/c τ/μ

 $t/b/\tau$

The <u>discovery</u> was achieved with only one production mechanism (gluon fusion) and two decays (diphoton, ZZ)

Higgs Production and Decay

Production Mechanisms:

Today: most production mechanisms and decays have been observed and measured! (and limits have been set on the other ones: bbH and tH production, H->cc decay)

Higgs and Leptons

- The Higgs couples to fermions proportionally to their mass
 - ▶ m_top >> m_bottom ≈ m_tau >> m_mu
- In 2016, ATLAS and CMS observed the H → tau tau decay:
 - First direct observation of the Higgs coupling to fermions!
- Due to the muon very small mass, H → mu mu has a very small branching ratio:
 - Not yet observed, but almost...
 - 3 standard-deviation significance by CMS
 - 2 standard-deviation significance by ATLAS.

Higgs and Quarks

- ttH production and VH(H→bb) were the most challenging to observe:
 - Complex events
 - Backgrounds difficult to model

• ttH: Observation of ttH production with data from 2011-2016 (2017) by combining many Higgs and top decay channels.

- Now observed with 5 s.d. significance in the H→yy channel alone!
- H → bb: Observation of VH(H→bb) in with 2011-2017 data.

The Big Picture

 Measurement of production and decay rates allow to measure couplings between Higgs and other particles

What we know today: A Summary

- Since its discovery in 2012, a lot of progress has been made in our knowledge of the Higgs boson thanks to the LHC Run 2 data:
 - All main production mechanisms and decays to W/Z vector bosons and 3rd generation fermions have been observed.
 - Main interaction couplings measured with a precision of O(10%). Several others are starting to be constrained.
 - Spin and symmetry properties have been tested.
 - Event kinematics: differential measurements.
- Limits have been set on some non-Standard Model phenomena:
 - Higgs decay to non-Standard Model particles (e.g. "invisible Higgs", decaying to Dark Matter).
 - Additional Higgs (e.g. from Supersymmetry).
- So far, the Higgs boson looks exactly as predicted by the Standard Model, but a lot more can be done at the HL-LHC and at future colliders...

Part 2 What we hope to learn at HighLuminosity LHC and beyond

Christophe Ochando

Introduction

The Higgs boson discovery is not the end of the story...
... it's rather the beginning of a new era in High Energy Physics.

- ➤ Run 1 and Run 2 data taking allowed to start the exploration, but a LOT is still to be done.
- > The Higgs is at the root of several problems of the Standard Model...
 - ... It may be a **portal towards New Physics**!

We MUST study it in all possible details.

Will be observed in the next years

Observed

(some) Open Questions related to the Higgs boson

- > In addition to the questions mentioned before:
 - Does it couple to known particles as expected from the Standard Model ?
 - Does it couple to Dark Matter?
 - Is there an extended scalar sector (i.e., are there other Higgs) ?
- > Is it a fundamental or composite (ie, made of other, new, particles)?
- \triangleright Are there "forbidden" decays (H $\rightarrow \tau^+\mu^-$)?
- > Are there charge-parity (CP) violating Higgs decays?
 - <=> connection to matter-antimatter asymmetry
- > Is it connected to the mechanism at the origin of the cosmic inflation?

(some) Open Questions related to the Higgs boson

> In addition to the questions mentioned before:

> Is it a fund

> Are there `

- Does it couple to known particles as expected from the Standard Model ?
- Does it Answers to these questions may come from:
- Is ther Very high precision measurements
 - Any deviations wrt calculations may be New Physics
 - Need more statistics
 - + progress on both theory calculations and experimental techniques
- ➤ Are there charge party (c) / violating ringgs access .
- <=> connection to matter-antimatter asymmetry
- > Is it connected to the mechanism at the origin of the cosmic inflation?

js) ?

les)?

Future Machines

Requires new machines / new detectors (beyond the current LHC & on-going Run 3 data taking)

High-Luminosity LHC Statistics x 20 wrt LHC

International Linear Collider

FCC-ee: Higgs factory

FCC-hh: High Energy (100 TeV) proton collisions 4

Higgs Couplings @ HL-LHC

Most couplings to the Higgs boson known to 2-4% at the end of HL-LHC

Ex: Coupling to W/Z bosons known to < 10% (now)... < 2% (HL-LHC)

 N_{Higgs} produced per experiment

8.10⁶ 180.10⁶

Higgs couplings @ Higgs factories (and beyond)

Most couplings to the Higgs boson known to 0.2-2% at the end of Higgs Factories

N_{Higgs} produced per experiment

Ex: Coupling to W/Z bosons known to < 10% (now)... 8.10 6 < 2% (HL-LHC) 180.10 6 \sim 0.2-0.3% (Higgs Factories) 10 7

Higgs Self-Coupling

- Phase transition dynamics is dictated by the "Higgs potential"
- How to access it ? Measure "Higgs self-coupling" (λ_{HHH})
- How ? Study Double-Higgs production!
 (Very rare process... 3 orders of magnitude rarer than single H)
- New physics can have huge impact...

Higgs Self-Coupling @ colliders

Higgs Self-coupling: 1st Observation requires HL-LHC

~ 50% precision (HL-LHC)

~ 5% precision (Higgs Factories+FCC-hh)

All future colliders combined with HL-LHC

Detector challenges at HL-LHC and beyond

New challenges for detectors at HL-LHC

Run 2

$$\sqrt{s} = 13.6 \text{ TeV}$$

2010 2015

2019

2022

2026

$$\langle \mu \rangle = 20$$

$$\langle \mu \rangle = 30$$

$$\langle \mu \rangle = 60$$

$$\langle \mu \rangle = 140-200$$

Phase 1 upgrades

Phase 2 upgrades

E. Brost Higgs10 symposium CERN 4/07/222

Radiation hardness

Trigger/readout

Reconstruction/software

New detectors for HL-LHC

ATLAS@IJCLAb

46 (19 phys, 9 PhD, 28 lng)

ATLAS@Irfu

40 (16phys, 6PhD, 18 ing)

ATLAS&CMS@ omega

10 (3 PhD, 7 Ing)

CMS@LLR

37 (17phys, 10 PhD, 10 ing)

CMS@irfu

27(14 phys, 3 Phd, 9 ing)

→ about 2/3 involved in upgrade (~120)

Micro-electronics circuit at the forefront of Phase II (Irfu/Omega)

Conception of new asics for calorimetry and timing measurements: new CMOS technology and quite difficult layout with analog and digital while targeting low noise, low jitter, low power....

HGCROC: CMS HGCAL (Irfu & Omega), 120000 chips

CATIA: CMS barrel ECAL readout 100000 chips (Irfu)

CLAROC & LADOC :ATLAS calo calibration 10000 chips (Omega)

RAFAEL: precise clock distribution (Irfu) 40000 chips

Asics still under validation, and large mass production over 2023-2025 and testing!

Board design and testing also for ATLAS calorimeter (IJCLAb) CMS calorimeter (Irfu)

An ultra granular Endcap calorimeter in CMS (Irfu/LLR/Omega)

Up to 6 millions of channels. New and challenging technology

- Sensors
- HGCROC ASIC design (Irfu/Omega) and test (LLR)
- Mechanical design (CE-E)+ cooling (LLR)
- Trigger and reconstruction with AI methods (LLR)
 (R&D as major part of P2IO emblematic project HIGHTEC)

New vertex detector (IJCLAb/Irfu) in ATLAS

- Paris cluster (IJCLab, Irfu, LPNHE): construction of 2000 pixel modules
 Dedicated Infrastructures (funds from P2IO&CPER)
- Probe station for asic and sensor validation at wafer level
- Module assembly (Gluing, wire bonding) and metrology
- Electronics tests and thermal cycling

Precise time measurement as new tool at HL-LHC (IJCLAb, Irfu, Omega) cors

+0.11 ns

-0.11 ns

+0.15 ns

+0.4 ns +0.02 ns -0.12 ns

(chosen as t = 0)

-0.05 ns +0.2 ns

High Granular Timing Detector (HGTD)

Measuring track time to better than 50 ps!

- Using new sensors (LGAD)
- Challenging readout asic (OMEGA & IJCLAb)
- Compact mechanical design and cooling (IJCLAb)
- Module assembly (2000) quite similar to pixel and share same infrastructures (IJCLAb & Irfu)

Initial studies funded by P2IO/HIGHTEC

Key success of HL-LHC: computing and software

GRIF T2 : Computer centers at LLR, Irfu and IJCLab

- Need continuous increase of T2 capability
- Development of new algorithm for data reconstruction including machine learning both online in FPGA and offline

(DATAIA @ Paris Saclay & "Learning to Discover" worskshop at Institut Pascal)

Graph Neural Network for HGCAL CMS

Beyond HL-LHC

New generation of trackers and calorimeters

- Some R&D quite mature, targeting specifically ILC started one decade ago: CALICE (LLR, IJCLab, Omega), TPC with microMegas (Irfu)
- Some R&D targeting FCC-ee started recently on calorimetry at IJCLab (Noble liquid, Liquido) and tracker at Irfu (CMOS)
 - → increasing commitments/responsibilities expected from our labs in the next years