Misura diretta della massa del neutrino

Andrea Nava

Presentazioni Tesi Magistrali 2022

KATRIN e TRISTAN

Misura diretta della massa del neutrino

La scoperta delle oscillazioni ha dimostrato che, seppur piccola, i neutrini hanno massa, ma ...

- → le oscillazioni sono sensibili solo alle differenze di massa tra gli autostati dei neutrini, non al valore assoluto della massa, serve un'altra osservabile!
- il decadimento β produce un elettrone e un (anti)neutrino, dividendo tra queste particelle una quantità fissa di energia: il Q valore
- → se il neutrino non avesse massa l'elettrone potrebbe avere energia da 0 a Q, mentre se il neutrino ha massa l'energia dell'elettrone varia da 0 a Q-m_v
- Si può misurare la massa del neutrino andando a guardare l'endpoint di uno spettro β!

Misura diretta della massa del neutrino con KATRIN

La deformazione è dell'ordine dell'eV → serve una risoluzione dello stesso ordine di grandezza

Misura diretta della massa del neutrino con KATRIN

La deformazione è dell'ordine dell'eV \rightarrow serve una risoluzione dello stesso ordine di grandezza

TRISTAN: ricerca di neutrini sterili con KATRIN

Il neutrino sterile è un ipotetico quarto neutrino che interagisce solo gravitazionalmente o tramite mixing con i tre neutrini attivi \rightarrow può avere circa qualunque massa

→ se avesse massa nel range dei keV sarebbe un candidato per la materia oscura!

Nel decadimento β viene sempre emesso un (anti)neutrino elettronico, che poi si propaga in autostati di massa leggeri ("standard") o in questo ipotetico quarto stato di massa

- → se ciò succede, il corrispondente spettro finisce a Q-m_s
- → questo spettro va poi a sommarsi con quello "standard" generando un kink

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \cos^2\theta \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_{\beta}) + \sin^2\theta \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_4)$$

TRISTAN: ricerca di neutrini sterili con KATRIN

La deformazione non è più solo all'endpoint, può essere ovunque nello spettro

→ occorre misurare tutto lo spettro

Il filtro elettrico deve essere rimosso, arriveranno al detector molti più elettroni → serve un detector più veloce per reggere l'alto rate

Matrice di Silicon Drift Detector (SDD) \rightarrow circa 1000 detector in totale

Proposte di Tesi Software

TRISTAN

- simulazione in Geant4 della sorgente di Trizio di KATRIN
- simulazione in Geant4 del detector di KATRIN con focus sulla sistematica del backscattering e sul suo impatto sul limite alla massa del neutrino

- sviluppo di un programma per simulazioni ad alta statistica parzialmente basato su Geant4
- studi di sensibilità al neutrino sterile con focus sull'impatto della risposta di un SDD agli elettroni
- studi di sensibilità di TRISTAN alla fisica oltre il Modello Standard

Proposte di Tesi Hardware

- caratterizzazione della risposta di SDD agli elettroni mediante confronto tra simulazioni e misure raccolte utilizzando un electron-gun
- ottimizzazione del design di un electron-gun
- misure della probabilità di backscattering per diversi materiali con applicazioni a KATRIN e TRISTAN
- sviluppo di un setup sperimentale composto da un SDD e cristalli scintillanti letti da SiPM per misure di spettroscopia beta

per maggiori info: M.Biassoni matteo.biassoni@mib.infn.it

HOLMES

U

Misura diretta della Massa del Neutrino

Misura diretta della massa del neutrino

La massa del neutrino diventa rilevante in decadimenti deboli quando esso viene emesso come particella non relativistica, ovvero all'*end-point* dello spettro di un decadimento beta

 $^{A}_{Z}X+e^{-}\rightarrow ~^{A}_{Z-1}X'+\nu_{e}$

 $Q = m_n \binom{A}{Z} X + m_e - m_n \binom{A}{Z-1} X' - m_{\nu_e}$

Lo spettro conseguente la cattura elettronica è diverso dallo spettro beta (deriva da riarrangiamenti atomici) ma segue la stessa fisica!

$$\frac{d\lambda_{EC}}{dE_x} \propto (Q - E_x) \sqrt{(Q - E_x)^2 - m_\nu^2}$$
$$m_\nu = \left(\sum |U_{i,j}|^2 m_j^2\right)^{1/2}$$

L'esperimento viene installato presso il laboratorio di Crioge di Unimib

Oltre a Univ+INFN Mib , fanno parte della collaborazione:

- INFN Genova
- PSI (Svizzera)
- NIST (Boulder, (CO) USA)
- ILL (Francia)
- Centra-Ist (Portogallo)

200 µm

2 x 32 detectors

1 cm

2 cm

Proposte di tesi in HOLMES

- Sviluppo rivelatori innovativi in collaborazione con FBK (Trento)
- Setup impiantatore ionico in collaborazione con INFN-Ge
- Sviluppo algoritmi di machine learning per discriminazione automatizzata di eventi spuri
- Sviluppo di algoritmi di intelligenza artificiale per automatizzazione di routine di analisi di grandi numeri di rivelatori a bassa temperatura
- Studio sensibilità di esperimenti per la misura della massa del neutrino con approccio bayesiano

Per info su proposte di tesi: A. Nucciotti: <u>angelo.nucciotti@mib.infn.it</u>

Competenze tecnologiche legate a HOLMES

- Superconduttività
- Microonde
- Tecniche di criogenia (T ≈ 10 mK)
- Tecniche di processamento dati
- Micromachining
- Impiantazione ionica
- Analisi dati
- Programmazione
- Sviluppo di hardware

Ricerca dei neutrini primordiali con PTOLEMY

- Sviluppo, realizzazione e ottimizzazione di rivelatori TES ottimizzati per le basse energie
- Sviluppo sistema criogenico per la caratterizzazione dei TES sviluppati
- Studio della sensibilità dell'esperimento con approccio bayesiano

