Physics Results from CMS (First 12 Months of 7 TeV Physics)

P. SPAGNOLO CMS Collaboration INFN Pisa / CERN

The CMS Collaboration

countries

1/4 of the people who made CMS possible

Pixel Tracker ECAL HCAL 3170 scientists and engineers (including Solenoid coil 800 students) from 69 institutes in 39

CMS is a Compact Experiment (2x2x2 smaller than ATLAS)

CMS Detector

SILICON TRACKER Free (10) (15) (7) -17) (60) (12) Nd(stips(80)(8))) -20)7) -90) (12)

> CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)

> > PRESHOWER tips h-Brdans

STEEL RETURN YOKE

SUPERCONDUCTING SOLENOID Nicionalianacio censira - 1800 A

Tielveigh : 1400 tones Oael danser : 150 m Oael leigh : 287 m Manicfield : 38 T HADRON CALORIMETER (HCAL) Bas-talicai (lato - Technics FORWARD CALORIMETER Sel-topatzines -Related

MUON CHAMBERS Earce: 251 Mt Upp8481 & five Peles Cartons Errolaps473 Calcod Stip8432 & five Peles Cartons

Statistics available in CMS

LHC vs Tevatron reach as function of energy and luminosity

Paolo SPAGNOLO

Achievements of CMS

Physics commissioning (in advanced progress)
Soft Physics (many results)
Jet Physics (many results)
EWK Physics (W and Z cross sections, properties)
B (and charm) physics at 7 TeV (cross sections)
Top Physics (the birth of a top factory)
Search for New Physics (entering a new land)

This talk will not cover the Heavy Ion collisions

Physics commissioning

How well do we know the absolute luminosity ? Van Der Meer scans

Beam intensities and crossing frequency are known with good accuracy The effective overlap area A can be determined by scans in separation

- The present uncertainty dominated by the knowledge of the beam currents.
- 4% in the reprocessed 2010 data
- ~10% in the 2011 (will decrease soon to 4%)
- Event counts with "Monte Carlo cross sections" give consistent results

Soft Physics

At nominal luminosity (**10**³⁴) 25 inelastic collisions will be superimposed to the interesting events (**pileup**)

The initial phase (**10**²⁸ - **10**³¹) was the right moment to study their properties: we had "**minimal trigger bias**"

We needed also to tune the general properties of our Monte Carlo generators

We have also to "calibrate" the Heavy lon collisions

$\phi~\eta~$ angles definition

CHARGED HADRONS

Charged-hadron yield in the range|η|<2.4 (systematics smaller than symbols)

Multiplicity distributions

J. High Energy Phys. 01 (2011) 079

Figure 3: The charged hadron multiplicity distributions with $|\eta| < 2.4$ for (a) $p_T > 0$ and (b) $p_T > 500 \text{ MeV}/c$ at $\sqrt{s} = 0.9$, 2.36, and 7 TeV, compared to two different PYTHIA models and the PHOJET model. For clarity, results for different centre-of-mass energies are scaled by powers of 10 as given in the plots.

Bose-Einstein Correlations

Phys. Rev. Lett. : 105 (2010) , pp. 032001

Correlation is studied using the ratio R between join probability of emission of a pair of bosons and the individual probabilities.

$$R = rac{P(p_1, p_2)}{P(p_1) \ P(p_2)}$$

Angular Correlation Functions

Long-range near-side correlations in high multiplicity events (N>110)

J. High Energy Phys. 09 (2010) 091

Low mass resonances

 Tracks displaced from primary vertex (d_{3D} > 3σ)
 Common displaced vertex (L_{3D} > 10σ)

ICPP Paolo SPAGNOLO Invariant mass distribution for different combinations $(\Omega^{\pm} \rightarrow \Lambda K^{\pm} \text{ or } \Xi^{\pm} \rightarrow \Lambda \pi^{\pm})$ fit to a common vertex.

Jets

Jet Physics has started

NLO QCD jet spectrum – no detector effects included

Inclusive jet cross sections

CMS-PAS-QCD-2010-011/12

Inclusive jet cross sections

CMS-PAS-QCD-2010-025

Accepted by Phys. Lett. B

First b cross section measurements at 7 TeV : lepton tagging

Paolo SPAGNOLO

Dilepton resonances at 7 TeV

 $J/\psi \rightarrow \mu^{+}\mu^{-}$

 $\sigma(pp \rightarrow J/\psi + X) \cdot BR(J/\psi \rightarrow \mu^+\mu^-) = 97.5 \pm 1.5(\text{stat}) \pm 3.4(\text{syst}) \pm 10.7(\text{luminosity}) \text{ nb.}$

Inclusive J/ ψ cross section and fraction from b

Eur.Phys.J. C71 (2011) 1575

 $BR(J/\psi \to \mu^+\mu^-) \cdot \sigma(pp \to prompt J/\psi) = 70.9 \pm 2.1 \pm 3.0 \pm 7.8 \text{ nb}$ $BR(J/\psi \to \mu^+\mu^-) \cdot \sigma(pp \to bX \to J/\psi X) = 26.0 \pm 1.4 \pm 1.6 \pm 2.9 \text{ nb}$

First Upsilon measurements at 7 TeV

CERN-PH-EP-2010-055

$$\begin{split} &\sigma(\mathrm{pp} \to \mathrm{Y}(1\mathrm{S})X) \cdot \mathcal{B}(\mathrm{Y}(1\mathrm{S}) \to \mu^+\mu^-) = 7.37 \pm 0.13(\mathrm{stat.})^{+0.61}_{-0.42}(\mathrm{syst.}) \pm 0.81(\mathrm{lumi.})\,\mathrm{nb}\,, \\ &\sigma(\mathrm{pp} \to \mathrm{Y}(2\mathrm{S})X) \cdot \mathcal{B}(\mathrm{Y}(2\mathrm{S}) \to \mu^+\mu^-) = 1.90 \pm 0.09(\mathrm{stat.})^{+0.20}_{-0.14}(\mathrm{syst.}) \pm 0.24(\mathrm{lumi.})\,\mathrm{nb}\,, \\ &\sigma(\mathrm{pp} \to \mathrm{Y}(3\mathrm{S})X) \cdot \mathcal{B}(\mathrm{Y}(3\mathrm{S}) \to \mu^+\mu^-) = 1.02 \pm 0.07(\mathrm{stat.})^{+0.11}_{-0.08}(\mathrm{syst.}) \pm 0.11(\mathrm{lumi.})\,\mathrm{nb}\,. \end{split}$$

Cross-section of $B^+ \to K^+ \; J/\psi$

 $L = 5.8 \text{ pb}^{-1}$

Phys.Rev.Lett.106:112001,2011

for $p_{\rm T}^{\rm B} > 5\,{
m GeV}$ and $\left|y^{\rm B}\right| < 2.4$

The total integrated cross section = $28.1 \pm 2.4 \pm 2.0 \pm 3.1 \mu b$

Cross-section of $B^0 \rightarrow K_s^0 J/\psi$

 $L = 5.8 \text{ pb}^{-1}$

CERN-PH-EP-2011-034

 $p_{\rm T}^{\rm B} > 5 \,{\rm GeV}$ and $|y^{\rm B}| < 2.2$

The total integrated cross section = $3\overline{3}.2 \pm 2.5 \pm 3.5 \,\mu b_{\mu}$

$Bs \to J/\Psi\phi \ mass \ peak$

Kaons: transverse momentum p_T (K)>0.6 GeV/c and $|\eta|$ <2.5; ϕ : candidate mass within 10 MeV/c² around the mass PDG value;

CMS Experiment at LHC, CERN Data recorded: Sun Jul 4 01:33:41 2010 EDT Run/Event: 139364 / 20750462 Lumi section: 20

 μ^+

K-

K+

Trajectories before vertex fit with $p_T > 0.3$ GeV/c in the vicinity of the PV

Detector performance plot: Λ_b invariant mass peak

- Exclusive channel: $\Lambda_b \to J/\psi(\mu\mu)\Lambda^0(p\pi)$
- Unbinned likelihood fit for final mass fit, Gaussian plus linear background
- All signal estimations $\pm 2.5\sigma$ around peak
- All errors statistical only.

CMS Experiment at LHC, CERN Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST

Electrons $p_T = 34.0, 31.9 \text{ GeV/c}$ Inv. mass = 91.2 GeV/c²

$-Z \rightarrow ee$

CMS Experiment at LHC, CERN Run 135149, Event 125426133 Lumi section: 1345 Sun May 09 2010, 05:24:09 CEST

Muon p_T = 67.3, 50.6 GeV/c Inv. mass = 93.2 GeV/c²

 $Z \rightarrow \mu\mu$

CMS-PAS-EWK-2010-005

 $Z \rightarrow \mu\mu$

Z →ee

CMS-PAS-EWK-2010-005

 $Z \rightarrow \mu\mu$

Z cross-section measurements

CMS-PAS-EWK-2010-005

The W jacobians

W cross-section measurements

ICPP Paolo SPAGNOLO

W cross-section measurements

Paolo SPAGNOLO

W, Z cross sections

ICPP Paolo SPAGNOLO

CMS-PAS-EWK-2010-013

ICPP Paolo SPAGNOLO

CMS-PAS-EWK-2010-013

41

$Z \rightarrow tau tau \rightarrow mu + tau_{had}$ (three prong tau)

CMS Experiment at LHC, CERN Data recorded: Sun Aug 15 03:57:48 2010 CEST Run/Event: 142971 / 323188785 Lumi section: 348 Orbit/Crossing: 91187947 / 2286

τ Pt = 37.4 GeV/c η = 1.5 Mass = 1.2GeV/c²

μ

Vis. Mass= 70 GeV/c²
$$M_{T}(\mu,MET) = 4.1 GeV$$

μ

First candidate ZZ \rightarrow 4 μ $\mu_0 + \mu_1$: 92.15 GeV (total(*Z*) p_T 26.5 GeV, ϕ -3.03), $\mu_2 + \mu_3$: 92.24 GeV (total(*Z*) p_T 29.4 GeV, ϕ +.06),

Paolo SPAGNOLO

WW production (W \rightarrow lepton)

Physics Letters B 699 (2011) 25–47

 $pp \rightarrow WW$ cross section = 41.1 ± 15.3(stat) ± 5.8 (syst) ± 4.5 (lumi) pb

The birth of a top factory !

29th October 2010: First Measurement of Top-Quark Pair Production Cross Section in Proton-Proton Collisions at sqrt(s)= 7 TeV (Physics Letters B695 (2011) 424)

Dilepton channel, mass measurement

- Xsection low, but less background; mostly from lepton misidentification
 - 2 isolated leptons, not compatible with a Z decay; with two or more jets p_T>30
 - Sizeable (> 30 GeV) missing E_T accounting for the neutrinos

 $m_{top} = 175.5 \pm 4.6(stat) \pm 4.6(syst) GeV/c^2$

ICPP Paolo SPAGNOLO

e+mu dilepton candidate event

Dilepton channel, electrons or muons

arXiv:1105:5661

 $\sigma_{\text{ft}} = 168 \pm 18 \,(\text{stat.}) \pm 14 \,(\text{syst.}) \pm 7 \,(\text{lumi.}) \,\text{pb}$

Semileptonic channel, 1 lepton + jets

arXiv:1106:0902

$$\sigma_{t\bar{t}} = 173^{+39}_{-32} (stat. + syst.) \pm 7 (lumi.) pb$$

$$m_{\rm t} = 173.1 \pm 2.1({\rm stat})^{+2.8}_{-2.5}({\rm syst})$$
 GeV.

ICPP Paolo SPAGNOLO

Top xsection

CMS PAS TOP-11-001

CMS Preliminary, \s=7 TeV

Paolo SPAGNOLO

Single Top cross section

Two different analysis using leptonic W decays

Cut based, using angular info + 1 btagged jet

 $\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{lj}^*} = \frac{1}{2}(1+A\cos\theta_{lj}^*)$

BDT, based on kinematic observables

Constrains on Higgs Mass

M_{H} free parameter in SM Indirect measurements: From EWK precision data through radiative corrections $M_{H} = 89.0^{+35}_{-26} \text{ GeV}$ Excluded M_H>158 GeV (@95%) From direct searches at LEP M_μ>114.4 GeV/c² @ 95% C.L. From direct searches at Tevatron Now: from direct searches at LHC

CMS

(Bayesian)

3.0 x SM

2.1 x SM

(MSSM) $A \rightarrow \tau \tau$

arXiv:1104.1619

CMS Sensitivity Projections @ 5 fb⁻¹

55

CMS Significance of Obs. @ 5 fb⁻¹

56

CMS Significance vs Luminosity

ICPP Paolo SPAGNOLO

LHC sensitivity vs Luminosity

ATLAS + CMS ≈ 2 x CMS	95% CL exclusion	3 σ sensitivity	5σ sensitivity
1 fb ⁻¹	120 - 530	135 - 475	152 - 175
2 fb ⁻¹	114 - 585	120 - 545	140 - 200
5 fb ⁻¹	114 - 600	114 - 600	128 - 482
10 fb ⁻¹	114 - 600	114 - 600	117 - 535

- At LHC exotic not Standard Models can be tested
- Similar Signatures: high invariant mass of the final state, isolated high-p_T leptons, large missing E_T, very energetics photons and jets, ...
- First data may not be enough to distinguish between the different models
- However we can see if there is new physics!
- New vector bosons
- Extra dimensions
- Contact interactions

SUSY Search Strategy

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Large	SN	1 backgrounds		Low		
sensitivity to str		trongly produce	d SUSY		sensitiv gauge-media	vity to ated SUSY

Basic analysis strategy:

Focus on topology using different kinematic observables

So that types of SM bkg and detector strong assets drive the searches

Use well understood CMS 'objects'

>Leptons, photons, jets, MET; Particle Flow to increase sensitivity everywhere

Use data driven background whenever possible

 2011: setting the best limits is important, but we should be prepared for discovery
Some examples follow... Full results at <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u>

Analysis	Approved Plots	CDS Entry	Luminosity	Comment
Search for Physics Beyond the Standard Model in Z + MET + Jets events at the LHC	SUS10010	PAS-SUS-10-010	34/pb	
Inclusive search for new physics at CMS with the jets and missing momentum signature	SUS10005	PAS-SUS-10-005	36/pb	
Further interpretation of the search for SUSY based on αT	SUS11001	PAS-SUS-11-001	35/pb	
Inclusive search for squarks and gluinos at $\sqrt{s} = 7$ TeV	SUS10009	PAS-SUS-10-009	35/pb	
Search for New Physics in pp Collisions at \sqrt{s} = 7 TeV in Events with a Single Lepton, Jets, and Missing Transverse Momentum	SUS10006		36/pb	
Search for Supersymmetry in pp Collisions at \sqrt{s} = 7 TeV in Events with A Lepton, Photon, and Missing Transverse Energy	SUS11002	CERN-PH- EP-2011-058	35/pb	arxiv:1105.3152
Search for Physics Beyond the Standard Model Using Multilepton Signatures in \sqrt{s} = 7 TeV pp Collisions with the CMS Detector at the LHC	SUS10008		35/pb	
Search for new physics with same-sign isolated di-lepton events with jets and missing transverse energy at the LHC	SUS10004	CERN-PH- EP-2011-033	35/pb	arxiv:1104.3168
A Search for New Physics in b-tagged dijet and multi-jet events with Missing Energy in pp collisions at \sqrt{s} TeV	SUS10011	PAS-SUS-10-011	35/pb	
Search for Physics Beyond the Standard Model in Opposite-Sign Dilepton Events in pp Collisions at \sqrt{s} = 7 TeV	SUS10007	CERN-PH- EP-2011-016	34/pb	arxiv:1103.1348
A Search for Supersymmetry in pp Collisions at 7 TeV Using Events with Two Photons and Large Missing Transverse Energy	SUS10002	CERN-PH- EP-2011-007	36/pb	arxiv:1103.0953
Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy	SUS10003	CERN-PH- EP-2010-084	35/pb	arXiv:1101.1628
Performance of Methods for Data-Driven Background Estimation in SUSY Searches	SUS10001	PAS SUS-10-001	11-76/nb	

A clear channel: same sign dileptons searches

arxiv:1104.3168

Easy selection

- Start from a lepton or HT trigger
- Ask for 2 same sign leptons (e,mu) with sizeable P_T
- Ask for at least 2 jets
- Ask for a sizeable MET
- Bkg mostly from fake leptons and leptons from ttbar (but overall < 1 event expected)

More difficult: Missing Momentum signatures

- You really need to understand your detector in details
 - Particle flow essential here
- Ask for
 - HT triggers
 - At least 3 jets
 - Sizeable HT and Missing momentum

All bkgs are estimated with data driven techniques

- CMS LM1:
 - mSUGRA
 - M0=60 GeV
 - M(1/2)=250 GeV
 - A0=0
 - tan(β)=10
 - µ>0

CMS-PAS-SUS-10-005

Method	Baseline		High-∦ _T		High-H _T		
	sele	selection		selection		selection	
$Z \rightarrow \nu \bar{\nu}$ from γ +jets	26.3	± 4.8	7.1	±2.2	8.4	±2.3	
$t\bar{t}/W \rightarrow e, \mu+X$ lost-lepton method	33.0	± 8.1	4.8	±1.9	10.9	± 3.4	
$t\bar{t}/W \rightarrow \tau_{hadr} + X$ method	22.3	± 4.6	6.7	± 2.1	8.5	± 2.5	
QCD Rebalance+Smear method	29.7	± 15.2	0.16	± 0.10	16.0	±7.9	
QCD factorization method	25.2	± 13.4	0.4	± 0.3	17.3	±9.4	
Total data-driven background	111.3	± 18.5	18.8	± 3.5	43.8	±9.2	
Observed in 36pb^{-1} of data	111		15		40		
			-				

CMS Combined Exclusion Plot

Limits extend beyond LEP/Tevatron reach

Paolo SPAGNOLO

Exotica

- "generic" Z', W'
 - extra gauge bosons, KK graviton, RS, etc
- Extra dimensions
- Black Holes
- Full list of results:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Analysis	ArXiv Entry	Luminosity	Publication Status	Approved Plots
Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics NEW	1106.2375 (hep-ex)	35/pb	Submitted to JHEP	EXO11013
Search for Same-Sign Top-Quark Pair Production at $\sqrt{s} = 7 \text{ TeV}$ and Limits on Flavour Changing Neutral Currents in the Top Sector NEW	1106.2142 (hep-ex)	35/pb	Submitted to JHEP	EXO11065
Search for First Generation Scalar Leptoquarks in the evjj channel in pp collisions at $\sqrt{s} = 7$ TeV NEW	1105.5237 (hep-ex)	36/pb	Submitted to PLB	EXO10006
Search for Large Extra Dimensions in the Diphoton Final State at the Large Hadron Collider	1103.4279 (hep-ex)	36/pb	Accepted by JHEP	EXO10026
Search for Resonances in the Dilepton Mass Distribution in pp collisions at \sqrt{s} = 7 TeV	1103.0981 (hep-ex)	40/pb	Accepted by JHEP	EXO10013
Search for a W' boson decaying to a muon and a neutrino in pp collisions at $\sqrt{s} = 7 \frac{\text{TeV}}{1 \text{ V}}$	1103.0030 (hep-ex)	36/pb	Submitted to PLB	EXO10015
Search for a Heavy Bottom-like Quark in pp Collisions at $\sqrt{s} = 7 \frac{\text{TeV}}{1 \text{ V}}$	1102.4746 (hep-ex)	34/pb	Accepted by PLB	EXO10018
Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at $\sqrt{s} = 7 \frac{\text{TeV}}{2}$	1102.2020 (hep-ex)	36/pb	10.1103/PhysRevLett.106.201804	EXO10009
Search for Heavy Stable Charged Particles in pp collisions at $\sqrt{s} = 7 \text{ TeV}$	1101.1645 (hep-ex)	3.1/pb	10.1007/JHEP03(2011)024	EXO10011
Search for for a heavy gauge boson W' in the final state with an electron and large missing transverse energy in pp collisions at $\sqrt{s} = 7 \text{ TeV}$	1012.4945 (hep-ex)	36/pb	10.1016/j.PhysLetB.2011.02.048	EXO10014
Search for Pair Production of First-Generation Scalar Leptoquarks in pp Collisions at \sqrt{s} = 7 TeV	1012.4031 (hep-ex)	33/pb	10.1103/PhysRevLett.106.201802	EXO10005
Search for Pair Production of Second-Generation Scalar Leptoquarks in pp Collisions at $\sqrt{s} = 7 \text{ TeV}$	1012.4033 (hep-ex)	34/pb	10.1103/PhysRevLett.106.201803	EXO10007
Search for Microscopic Black Hole Signatures at the Large Hadron Collider	1012.3375 (hep-ex)	35/pb	10.1016/j.PhysLetB.2011.02.032	EXO10017
Search for Stopped Gluinos in pp Collisions at $\sqrt{s} = 7 \text{ TeV}$	1011.5861 (hep-ex)	10/pb	10.1103/PhysRevLett.106.011801	EXO10003
Search for Quark Compositeness with the Dijet Centrality Ratio in pp Collisions at $\sqrt{s} = 7$ TeV	1010.4439 (hep-ex)	2.9/pb	10.1103/PhysRevLett.105.262001	
Search for Dijet Resonances in 7 TeV pp Collisions at CMS	1010.0203 (hep-ex)	2.9/pb	10.1103/PhysRevLett.105.211801	

W', Z' to leptons

Z': search for a clear peak mass under DY continuum

arXiv:1103.0981

Channel	μμ	ee	Combined
Z _{SSM}	1027 GeV	958 GeV	1140 GeV
Ζ _ψ	792 GeV	731 GeV	887 GeV
G _{KK} , k/M _{Pl} = 0.05	778 GeV	729 GeV	855 GeV
G _{KK} , k/M _{Pl} = 0.10	987 GeV	931 GeV	1079 GeV

W': search for peaks in the $M_T(I,v)$ spectrum

Extra dimensions in $\gamma\gamma$

- Require two high energy isolated photons, with $M\gamma\gamma > 60$ GeV
- Use barrel photons only, since they have highest purity
- Divide the spectrum in control, intermediate and signal region, and use control to assess the backgrounds

Upper limit on σ x BR < 0.11 pb for Myy> 500 GeV Lower limits on Effective Planck scale in the range 1.6-2.3 TeV (depending on the # of ED)

1103.4279 (hep-ex)

3.5

4.5

M_{BH}^{min} (TeV)

3

2.5

range 3.5 – 4.5 TeV (model dependent)

Conclusions

- Impressive wealth of results from first 12 months of run at 7 TeV
- CMS is doing very well and LHC exceeds expetactions
 - Usefull training on cosmics to understand detectors
 - Data usable from day 1
- Many preliminary results to be upgraded to final and published with 20 X statistics (and more...)
- I didn't mention Heavy Ions and many other interesting analyses
- 2011-12 will be exciting, approaching 10 fb⁻¹
- New physics is (hopefully) around the corner

Back-up slides
Search for di-jet resonances

Phys. Rev. Lett. 105, 211801 (2010)

Search for di-jet resonances

0.5<M(q*)<1.58 TeV

Other models excluded in given mass windows

Approaching Z' and W' with the analysis of all the collected 40 pb⁻¹

Di-jet mass and search for resonances

CMS-PAS-EXO-2010-010

Limit on contact interactions

CMS-PAS-EXO-2010-002

Di-jet centrality ratio (jets at $|\eta| < 0.7$ vs $0.7 < |\eta| < 1.3$)

 $\Lambda > 4$ TeV Limit from Tevatron ($\Lambda > 2.8$ TeV) surpassed

Search for Stopped Gluinos

Submitted to PRL arxiv:1011.5861

 Searched for long-lived gluinos that stops in CMS and decays producing a signal in HCAL

•Explored a region uncovered by Tevatron,

Paolo SPAGNOLO

Esclude M>370 GeV

Prologo: Correlations in Heavy Ions

Collective flow phenomena:

~ $\cos(2\Delta \phi)$ (long-range in η)

Extracted shear viscosity of the medium found to be close to theoretical lower bound $1/4\pi$

Most convincing evidence of "perfect liquid" at RHIC!

Paolo SPAGNOLO

Jet corrections

Absolute calibration from γ +jet events

CMS: absolute correction ~ 10% for CALO and 5% for PF as uncertainty

Charged hadrons vs E_{cm}

Rise of dN/dŋ in data stronger than currently used models

"N" leptons mSUGRA exclusions with tanβ= 3, μ> 0 and A0= 0

Underlying events at 7 TeV

CMS-PAS-QCD-2010-010

Jet corrections

Relative corrections (jet equalization) from dijet balancing (data/MC) CMS-PAS-JME-2010-003

CMS: For relative corrections take 2% etal as uncertainty

Example : $dN/d\eta$ from CMS

Event selection:

- ->3 GeV total energy on both sides in the Forward Calorimeter (HF)
- Beam Halo rejection (BSC)
- Beam background rejection
- Collision vertex
- Measure NSD |η| < 2.5</p>
- Efficiencies:
 - NSD: ~86 %
 - SD: ~19 %
 - DD: ~34 %

Events with multiple primary vertexes were rare at that luminosity

Events with two primary vertices

Spectra of particles with strangeness

Heavy Stable Charged Particles

- A very early analysis: dE/dx and possibly Time-of-Flight based
 - dE/dx part is well understood from cosmic runs
 - Sensitivity beyond the Tevatron with as little as 1 pb⁻¹ of data

Tevatron combination

"Expected sensitivity"

The dN/dη distribution

Phys. Rev. Lett. : 105 (2010), pp. 02200

Correction for Single diffractive dissociation ~ few% controlled with data

Jet transverse structures

CMS-PAS-QCD-2010-014

Figure 3: Charged particle multiplicity N_{ch} (left) and transverse jet shape δR^2 (right) as function of JPT corrected jet transverse momentum p_T for a dijet sample. Data (cross symbols) are shown with statistical error bars and a band denoting systematic errors. Also shown are predictions based on the Pythia 6.401 tune D6T (filled histogram) and Herwig 2.2.0 (solid line) event generators.

First b cross section measurements at 7 TeV : lifetime tagging CMS-PAS-BPH-2010-009

Efficiency and purity determined from data