

Antonia Di Crescenzo

Napoli Univesity and INFN, Italy on behalf of OPERA Collaboration

2nd International Conference on Particle Physics

in Memoriam Engin Arık and Her Colleagues Doğuş University, İstanbul, Turkey 20 - 25 June 2011

The OPERA Collaboration

180 physicists, 32 institutions in 12 countries

http://operaweb.web.cern.ch/operaweb/index.shtml

Outline

- Introduction
- The OPERA experiment
 - Requirements
 - The CNGS neutrino beam
 - The OPERA detector
- Detector performances
- Physics results
- Conclusions and outlook

Neutrino oscillations

Neutrino oscillations

Neutrino oscillations

In the last decades several experiments provided evidence for neutrino oscillations (*disappearance mode*)

- <u>CHOOZ</u> (1997): The main oscillation channel responsible for atmospheric neutrino disappearance is not $v_{\mu} \rightarrow v_{e}$;
- <u>SK</u> (1998): The main oscillation channel responsible for atmospheric neutrino anomaly is not $v_{\mu} \rightarrow v_{e}$ and can be interpreted as $v_{\mu} \rightarrow v_{\tau}$ oscillation.
- (2004-2009) <u>K2K,MINOS</u>: precision measurements of v_{μ} disappearance

The OPERA experiment

Oscillation **P**roject with **E**mulsion-t**R**acking **A**pparatus

AIM: first direct detection of neutrino oscillations in **APPEARANCE** mode in the $V\mu \rightarrow V\tau$ channel

The OPERA experiment

Oscillation **P**roject with **E**mulsion-t**R**acking **A**pparatus

AIM: first direct detection of neutrino oscillations in **APPEARANCE** mode in the $V\mu \rightarrow V\tau$ channel

Oscillation parameters in the atmospheric neutrino sector

N 1 1 1 1 1 1 1 1 1 1 1

'ER A

- 400 GeV/c proton from the CERN SPS on graphite target, producing pions and kaons
- Helium tubes are placed in the free space of the target in order to reduce the interaction probability for secondary hadrons
- \bullet Pions and kaons are directed towards the decay tunnel to produce ν_{μ} beam
- Muon detectors are used for online monitoring and tuning of the beam

The CNGS neutrino beam

Conventional v beam

< E ν _μ > (GeV)	17
$(\nu_e + \overline{\nu}_e) / \nu_\mu$	0.87% *
$\overline{ u}_{\mu}/ u_{\mu}$	2.1% *
\mathbf{v}_{τ} prompt	Negligible *

* Interaction rate at LNGS

Expected interactions for 22.5 x 10¹⁹ pot (nominal pot in 5 years for 1.25 kton target) $\sim 23600 v_{\mu} CC + NC$ $\sim 160 v_e + \overline{v_e} CC$ $\sim 115 v_{\tau} CC (\Delta m^2 = 2.5 \times 10^{-3} eV^2)$ $\sim 10 v_{\tau} CC$ identified (BG<1)

The principle

- Massive active target with micrometric space resolution
- Detect *τ*-lepton production and decay
- Underground location

'ER A

• Usage of electonic detectors to provide "time resolution" to the emulsions and preselect the interaction region

Density x length of the muon track

Momentum x charge of the muon

Transverse profile of hadronic showers

Total reconstructed energy in events with at least one identified muon

Energy resolution

The target

Made of ~150000 ECC bricks

<u>Brick</u>

- 57 emulsion films
- 56 lead plates
- •1 Changeable Sheet doublet
- 10 X₀
- •8.3 kg

Event selection

τ selection based on decay topology

ECC Performance

Impact parameter measurement

Momentum measurement by MCS

Charged Current Event

$$\nu_{\mu}N \rightarrow \mu^{-}X$$

Neutral Current Event

$$\nu_{\mu}N \rightarrow \nu_{\mu}X$$

Emulsion scanning

Parallel ECC analysis in ~10 labs Numer of labs is increasing

ECC Brick Scan & Analysis Load JAPAN : EU = 50 : 50

NAPOLI SCANNING LAB

OPERA film data taking

~20 bricks daily extracted from the target analized using high-speed automated systems (~20 cm²/h)

European Scanning System

S-UTS (Japan)

Comon Data Base for data sharing/publication

- Customized commercial optics and mechanics
- Asynchronous DAQ software modular, decentralized, approach

- Synchronization of objective lens and (constant speed) stage
- Hard-coded algorithms, custom electronics

~90% tracking efficiency spatial resolution <1µm & angular resolution < 2 mrad

Event analysis in OPERA

Electronic detector reconstruction

Event analysis in OPERA

Electronic detector reconstruction

Vertex location in the brick

1. Scan 15 emulsion films around stopping plate

2. Reject passing through tracks

3. Search tracks making vertex

CNGS physics run

year	beam days	protons on target	SPS eff	trigger	run
2006		0.076×10^{19}		no brick	commissioning
2007		0.082×10^{19}		38	commissioning
2008	123	1.78x10 ¹⁹	61%	1698	Physiscs run
2009	155	3.52×10^{19}	70%	3693	Physiscs run
2010	187	4.04x10 ¹⁹	81%	4248	Physiscs run

• 9639 events collected

(within 1 σ in agreement on the basis of pots)

- 2010 close to nominal year
- 2.1 nominal years in 3 years
- 2011 run in progress
- Aim at high-intensity runs in 2011 and 2012

OPERA expects $\sim 0.5 v_{\tau}$ events

New data will be released at the end of this month

- 20 charm events selected
- (3 events with 1-prong kink topology)
- Expected: 16.0 ± 2.9 (0.80 ± 0.22 with kink)
- •~3 BG events expected

- 20 charm events selected(3 events with 1-prong kink topology)
- Expected: 16.0 ± 2.9 (0.80 ± 0.22 with kink)
- •~3 BG events expected

- 20 charm events selected
 (3 events with 1-prong kink topology)
- Expected: 16.0 ± 2.9 (0.80 ± 0.22 with kink)
- •~3 BG events expected

flight length:	313 µm
φ angle:	173.2 °
invariant mass:	1.7 GeV

The first $v\tau$ candidate was found

Event number 9234119599

taken on 22 Agust 2009, 19:27

This result was published in June 2010

as seen by electronic detectors ...

as seen by electronic detectors ...

... and as seen in emulsion

γ detection

- Length avaliable for γ detection downstream of the vertices: 6.5 X_0
- Two γ detected, both assumed to come from secondary vertex after impact parameter analysis

	Distance from 2ry vertex (mm)	IP to 1ry vertex (μm)	IP to 2ry vertex (μm)	Prob. of attach. to 1ry vtx	Prob. of attach. to 2ry vtx
$1^{st}\gamma$	2.2	45.0	7.5	<10-3	0.32
$2^{nd} \gamma$	12.6	85.6	22	0.10	0.82

red bands: values for the "interesting" event with bands

Kinematical cuts

Features of the decay topology

Kinematical variables

SELECTION CRITERIA	MEASURED
kink > 20 mrad	41 ± 2 mrad
decay length < 2600 µm	1335 ± 35 µm
P daughter > 2 GeV/c	12 +6 -3 GeV/c
Pt > 300 MeV/c	470 ⁺²³⁰ ₋₁₂₀ MeV/c
missing Pt < 1 GeV/c	0.57 ^{+0.32} _{-0.17} GeV/c
φ > 90°	173 ± 2 °

Kinematical variables

SELECTION CRITERIA	MEASURED
kink > 20 mrad	41 ± 2 mrad
decay length < 2600 µm	1335 ± 35 µm
P daughter > 2 GeV/c	12 +6 -3 GeV/c
Pt > 300 MeV/c	470 ⁺²³⁰ ₋₁₂₀ MeV/c
missing Pt < 1 GeV/c	0.57 ^{+0.32} _{-0.17} GeV/c
φ > 90°	173 ± 2 °

The event passes all the kinematical cuts required

Background sources

• Prompt v_{τ} $\sim 10^{-7}/CC$ • Decay of charmed particles produced in v_e interactions ~10⁻⁶ /CC Double charm production ~10⁻⁶ /CC

Main backgrounds:

- Decay of charmed particles produced in v_{μ} interactions ~10⁻⁵ /CC ~10⁻⁵ /CC
- Hadronic reinteractions

Charm background

- This background can be suppressed by identifying the primary lepton
 95% muon ID
- For the 1-prong hadronic channel (7 ± 4) × 10⁻³ background events are expected for the analysed statistics

• 160 million events (0.5 - 15 GeV/c) of $\pi^+\pi^-k^+k^-p$ impinging 1 mm of lead, equivalent to 160 km of hadronic track length produced with FLUKA

• Kink probability integrated over the v_{μ} NC hadronic spectrum after 2 mm of Pb and taking in to account the cuts on the event global kinematics: (3.8 ± 0.2) × 10⁻⁵ kinks/NC

MC validation by beam test π events PERA

• ECC brick exposed to 4 GeV/c pion: 18 times track length (20m) of τ search • DATA/MC comparison: good agreement in normalization and shape

Hadronic BG study with data

• Search for "decay-like" interactions track far away from the primary vertex

- No background-like interaction has been found in the signal region
- The probability to have a background kink over 2 mm of lead is less than
 1.54 x 10⁻³ at 90% CL

Event interpretation

- \bullet This event passes all cuts, with the presence of at least 1 γ pointing to the secondary vertex
- This event is a v_{τ} candidate with the $\tau \rightarrow 1$ -prong decay mode
- The invariant mass of the two detected γ is consistent with the mass π^0 value
- The invariant mass of the π - $\gamma\gamma$ system is compatible with taht of ρ (770). The ρ appears in about 25% of the τ decays:

$$\tau \rightarrow \rho (\pi^{-} \pi^{0}) \nu_{\tau}$$

π^0 mass	ρmass
$120 \pm 20 \pm 35$ MeV	640 ^{+125 +100} _{-80 -90} MeV

Statistical significance

1 $\nu\tau$ candidate in the 1-prong decay channel observed

Statistical significance

 $1\,\nu\tau$ candidate in the 1-prong decay channel observed

Background expectation for $\tau \rightarrow 1$ **-prong hadron decay** :

0.018 ± 0.007 (syst) events

- Probability that the observed event is due to background: **1.8** %
- Significance of v_{τ} observation in OPERA:

2.36 σ

Statistical significance

 $1\,\nu\tau$ candidate in the 1-prong decay channel observed

Background expectation for $\tau \rightarrow 1$ **-prong hadron decay** :

0.018 ± 0.007 (syst) events

- Probability that the observed event is due to background: **1.8** %
- Significance of v_{τ} observation in OPERA:

Total background from all decay modes:

 0.045 ± 0.020 (syst) events

- Probability that the observed event is due to background: 4.5 %
- Significance of v_{τ} observation in OPERA: 2.01 σ

2.36 σ

ν_e events

$13 v_e$ candidate events have been located in the OPERA target

- The OPERA Collaboration is successfully operating a hybrid detector to search for v_{τ} appearance in the CNGS beam
- The hybrid design concept in OPERA allows detailed study of each event, exploiting the best features of its nuclear emulsions, scintillators, RPC's and drift tubes
- 1 v_{τ} candidate was found in 2010 out a sample of 1088 fully analysed events
- Data taking in progress, more results to come in the near future!

Thank you for your attention!

Backup slides

Event topological features

Kinematical variables

TRACK NUMBER	PID	Probability	MEASUREMENT 1			l i	MEASUREM	ENT 2
			$\tan \Theta_{\rm X}$	$tan \Theta_Y$	P (GeV/c)	tan Θ _x	$tan\Theta_Y$	P (GeV/c)
1	HADRON range in Pb/ emul=4.1/1.2 cm	Prob(µ)≈10 ⁻³	0.177	0.368	0.77 [0.66,0.93]	0.175	0.357	0,80 [0.65,1.05]
2	PROTON	range, scattering and dE/dx	-0.646	-0.001	0.60 [0.55,0.65]	-0.653	0.001	
3	HADRON	interaction seen	0.105	0.113	2.16 [1.80,2.69]	0.110	0.113	1,71 [1.42,2.15]
4 (PARENT)			-0.023	0.026		-0.030	0.018	
5	HADRON: range in Pb/ emul=9.5/2.8 cm	Prob(µ)≈10 ⁻³	0.165	0.275	1.33 [1.13,1.61]	0.149	0.259	1,23 [0.98,1.64]
6	HADRON: range in Pb/ emul=1.6/0.5 cm	Prob(µ)≈10 ⁻³				0.334	-0.584	0,36 [0.27,0.54]
7	From a prompt neutral particle		0.430	0.419	0.34 [0.22,0.69]	0.445	0.419	0.58 [0.39,1.16]
8 (DAUGHTER)	HADRON	interaction seen	-0.004	-0.008	12 [9,18]	-0.009	-0.020	

Vertex tracks followed down (through several bricks) to assess the

muon-less nature of the event.

Residual probability of $\nu_{\mu}CC$ event (due to a possibly undetected large angle muon) ~ 1% "Nominal" value of 5% assumed

all the charged hadrons and electromagnetic particles attached to the primary vertex have been measured

P _{miss} at primary vertex	0.57 ^{+0.32} -0.17 GeV/c
\rightarrow event kinematics almost closed (no neutral particle missi	ng at the primary)
Sum of the modulus of the momenta at the primary vertex	24.3 +6.1 _{-3.2} GeV/c

Total hadronic momentum at the primary vertex \sim 5.5 GeV/c (not including that of the parent assumed to be a τ)

OPERA sensitivity

CNGS beam

Sensitivity to θ_{13}

full mixing, 5 years run @ 4.5x10¹⁹ pot / year

	A Signal Background				
(deg)	V→Ve	T->0	v CC	v NC	v _e CC
	μς	i ve	·μ	·μ. το	beam
9	9.3	4.5	1.0	5.2	18
7	5.8	4.5	1.0	5.2	18
5	3.0	4.5	1.0	5.2	18

Limits at 90% CL for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ full mixing

	$sin^2 2\Theta_{13}$	Θ_{13}
CHOOZ	<0.14	۱I°
OPERA	<0.06	7.1°

Nuclear emulsions

Decay modes

$\tau^- \rightarrow e^-$	(17.8 %)
$\tau^- \rightarrow \mu^-$	(17.4 %)
$\tau^{-} \rightarrow h^{-}$	(49.5 %)

 $\tau^{-} \rightarrow h^{-} h^{+} h^{-} (15.2 \%)$

The CNGS neutrino beam

conventional neutrino beam with a high intensity and high energy proton beam, intense short beam pulses and small beam spots (<1mm)

- 400 GeV/c proton from the CERN SPS on graphite target, producing pions and kaons
- $\bullet\,6$ s cycle length, 2 extractions every 50 ms, 10.5 μs pulse length
- beam intensity 2.4×10^{13} pot/extr

OPERA

- average power at the target 510 kW
- neutrinos from pions and kaons decaying in flight
- muon detectors are used for online monitoring and tuning of the beam