Top quark as a gate to new physics Z' production in top events at an e^+e^- collider

Ambroise Espargilière

LAPP, Annecy, France

ICPP II Istanbul

Outline

- Physics context
- Randall-Sundrum Dark Matter
- Z' production in top events

2 Z' Event selection

- Signal and background characteristics
- Analysis framework
- Selection results

3 Measurement of process cross section and Z' mass

- Method
- Results
- Inputs from full simulation
- 5 Conclusion
- 6 Bibliography

On the road to Grand Unification

- Many possible paths ...
 - Super Symmetry (SUSY) (+ String Theory, M-Theory)
 - Kaluza-Klein (KK) theories ... (Randall-Sundrum (RS), Pati-Salam, ...)
 - ...

• No experimental hint so far ...

The Dark Matter puzzle

- A well known problem
 - $\bullet~$ Dynamics of galaxies $\rightarrow~$ DM
 - $\bullet~$ Gravitational lensing $\rightarrow~$ DM
 - pprox 25% of Universe energy budget = Dark Matter (DM)
 - Unknown nature ...

A broad landscape

DM Candidates

in GUTs: proton stability \rightarrow stability of a DM candidate

- SUSY: R-parity \rightarrow Neutralino $\tilde{\chi}_0$ (LSP)
- RS: Z^3 symmetry \rightarrow LZP

DM Candidates

in GUTs: proton stability \rightarrow stability of a DM candidate

- SUSY: R-parity \rightarrow Neutralino $\tilde{\chi}_0$ (LSP)
- RS: Z^3 symmetry \rightarrow LZP

Randall-Sundrum Dark Matter

- Left-Right Analogy \rightarrow $SU(2)_{
 m R}$
- Right handed neutrinos (ν')
- Z' = neutral gauge boson of $SU(2)_{
 m R}$ coupling to RH states of matter

see [1] for details.

Expected properties:

(chosen among a wide range of possibilities, details in [2] and [3])

- Small coupling to SM through Z⁰/Z' mixing (O(1%), direct detection constraints)
- Z' couples to the SM only via RH top quark $t_{
 m R}$
- $m_{Z'}$ in the TeV range but as light as possible
- $m_{\nu'}$ a bit below $m_{Z'}/2$ (relic density constraint)

Expected properties:

(chosen among a wide range of possibilities, details in [2] and [3])

- Small coupling to SM through Z⁰/Z' mixing (O(1%), direct detection constraints)
- Z' couples to the SM only via RH top quark $t_{
 m R}$
- $m_{Z'}$ in the TeV range but as light as possible
- $m_{\nu'}$ a bit below $m_{Z'}/2$ (relic density constraint)

Z' production in top events

• Channel of interest $e^+e^- \rightarrow t\bar{t}Z'$:

Decay modes • $Z' \rightarrow t\bar{t}$ • $7' \rightarrow \nu' \bar{\nu}'$

Z' production in top events

• Channel of interest $e^+e^- \rightarrow t\bar{t}Z'$:

Decay modes • $Z' \rightarrow t\bar{t}$ • $Z' \rightarrow \nu' \bar{\nu}'$

Z' production in top events

• Channel of interest $e^+e^- \rightarrow t\bar{t}Z'$:

The study will focus on $Z' \rightarrow \nu' \bar{\nu}'$ in 3 TeV e^+e^- collisions.

• cross sections of $e^+e^- \rightarrow t\bar{t}Z'$ @3 TeV:

<i>m_{Z'}</i>	Cross sect.	$\sigma_{Z' \to \text{inv.}}$	$\sigma_{Z' \to t \overline{t}}$
$200 \mathrm{GeV}/c^2$	$14.9{ m fb}$	14.9 fb	0
$300 \mathrm{GeV}/c^2$	8.7 fb	8.7 fb	0
$400 \mathrm{GeV}/c^2$	$5.6{ m fb}$	2.4 fb	3 .2 fb
$500 \mathrm{GeV}/c^2$	3 .7 fb	1.2 fb	$2.5\mathrm{fb}$
$600 \mathrm{GeV}/c^2$	$2.6\mathrm{fb}$	0.8 fb	$1.8\mathrm{fb}$
$700 \mathrm{GeV}/c^2$	$1.8{ m fb}$	0.5 fb	$1.3{ m fb}$

ISR included

- Large number of final state particles
- Large number of jets (pprox 6)
- Missing energy

- Large number of final state particles
- Large number of jets (pprox 6)
- Missing energy

- Large number of final state particles
- Large number of jets (pprox 6)
- Missing energy

Background ($@3 \,\mathrm{TeV}$)

• SM $t\bar{t}$ events (25 fb)

- Large number of final state particles
- Large number of jets (pprox 6)
- Missing energy

Background (@3 TeV)

- SM $t\bar{t}$ events (25 fb)
- Non tt SM processes (hadronic decay modes)

- Large number of final state particles
- Large number of jets (pprox 6)
- Missing energy

- SM $t\bar{t}$ events (25 fb)
- Non tt SM processes (hadronic decay modes)
 - $e^+e^-
 ightarrow W^+W^-$ (263 fb) Very reducible

- Large number of final state particles
- Large number of jets (pprox 6)
- Missing energy

- SM $t\bar{t}$ events (25 fb)
- Non tt SM processes (hadronic decay modes)
 - $e^+e^-
 ightarrow W^+W^-$ (263 fb) Very reducible
 - $e^+e^- \to Z^0 Z^0$ (16 fb)

- Large number of final state particles
- Large number of jets (pprox 6)
- Missing energy

- SM tt events (25 fb)
- Non *tt* SM processes (hadronic decay modes)
 - $e^+e^- \rightarrow W^+W^-$ (263 fb) Very reducible

•
$$e^+e^- \to Z^0 Z^0$$
 (16 fb)

•
$$e^+e^- \to W^+W^-Z^0$$
 (11 fb)

- Large number of final state particles
- Large number of jets (pprox 6)
- Missing energy

- SM tt events (25 fb)
- Non tt SM processes (hadronic decay modes)

•
$$e^+e^- \rightarrow W^+W^-$$
 (263 fb) Very reducible

•
$$e^+e^- \to Z^0 Z^0$$
 (16 fb)

•
$$e^+e^- \to W^+W^-Z^0$$
 (11 fb)

•
$$e^+e^- \to Z^0 Z^0 Z^0$$
 (< 1 fb)

Analysis framework

• Analysis done at generator level

- Analysis done at generator level
- Assume $t\bar{t}$ event tagging with full efficiency + full purity

- Analysis done at generator level
- Assume $t\bar{t}$ event tagging with full efficiency + full purity
 - Neglect all non $t\overline{t}$ SM backgrounds

- Analysis done at generator level
- Assume $t\bar{t}$ event tagging with full efficiency + full purity
 - Neglect all non $t\overline{t}$ SM backgrounds
 - Results must be scaled according to real top tagging performance

- Analysis done at generator level
- Assume $t\bar{t}$ event tagging with full efficiency + full purity
 - Neglect all non $t\overline{t}$ SM backgrounds
 - Results must be scaled according to real top tagging performance
- Background for this study:

Analysis framework

- Analysis done at generator level
- Assume $t\bar{t}$ event tagging with full efficiency + full purity
 - Neglect all non $t\overline{t}$ SM backgrounds
 - Results must be scaled according to real top tagging performance
- Background for this study:

background 1: $e^+e^- \rightarrow t\overline{t}$

Analysis framework

- Analysis done at generator level
- Assume $t\bar{t}$ event tagging with full efficiency + full purity
 - Neglect all non $t\overline{t}$ SM backgrounds
 - Results must be scaled according to real top tagging performance
- Background for this study:

background 1: $e^+e^- \rightarrow t\bar{t}$

background 2: $e^+e^- \rightarrow t\bar{t} + \nu\bar{\nu}$

Discriminative variables

- Event dynamics (jet/hemisphere energies, momenta, ...)
- Event shape (sphericity, aplanarity, ...)
- Missing Energy & Co.

Boosted Decision Tree (BDT) results

	Sig. vs Bg1	Sig. <i>vs</i> Bg2	$ ot\!\!\!/_{\mathrm{T}}$ cut
∫ROC	0.955	0.971	N/A
S _{max}	99.6	113.8	88.6
$\epsilon @S_{max}$	90.8%	97.4%	85%
B@S _{max}	18.0%	14.6%	40.3%
$S_{ m max}$ cut	-0.0378	-0.3391	$175{ m GeV}$

Discriminative variables

- Event dynamics (jet/hemisphere energies, momenta, ...)
- Event shape (sphericity, aplanarity, ...)
- Missing Energy & Co.

Boosted Decision Tree (BDT) results

The key spectrum

Total event invariant mass (M_{event})

- ${ullet}$ No missing energy \Rightarrow ${\it M}_{\rm event}$ = Centre of mass energy / c^2
- Heavy invisible particle \Rightarrow $M_{\mathrm{event}} = E_{\mathrm{cm}} M_{\mathrm{inv}}$
- $M_{\rm inv}$ directly readable ?

The key spectrum

Total event invariant mass (M_{event})

- ${ullet}$ No missing energy \Rightarrow ${\it M}_{\rm event}$ = Centre of mass energy / c^2
- Heavy invisible particle \Rightarrow $M_{
 m event} = E_{
 m cm} M_{
 m inv}$
- $M_{\rm inv}$ directly readable ?

ISR Smearing

- $E_{\rm cm}$ not nominal
- Iow energy tail
- $E_{\rm cm} M_{\rm inv}$ smeared into a smooth fading

The key spectrum

Total event invariant mass (M_{event})

- ${ullet}$ No missing energy \Rightarrow ${\it M}_{\rm event}$ = Centre of mass energy / c^2
- Heavy invisible particle \Rightarrow $M_{
 m event} = E_{
 m cm} M_{
 m inv}$
- $M_{\rm inv}$ directly readable ?

ISR Smearing

- $E_{\rm cm}$ not nominal
- Iow energy tail
- $E_{\rm cm} M_{\rm inv}$ smeared into a smooth fading

The key spectrum

Total event invariant mass (M_{event})

- No missing energy \Rightarrow $M_{
 m event}$ = Centre of mass energy / c^2
- Heavy invisible particle \Rightarrow M_{event} = E_{cm} M_{inv}
- $M_{\rm inv}$ directly readable ?

ISR Smearing

$$f(x) = \frac{A}{(e^{\frac{s_1-x}{p_1}}+1)(e^{\frac{x-s_2}{p_2}}+1)}$$

Background only

Background subtracted

For various Z' masses (identical statistics)

A clear relation:
$$m_{Z'} = rac{(2757 \pm 8) - s_2}{1.05 \pm 0.02}$$

Measurement of process cross section and Z' mass Results

Roadmap

- Use statistics corresponding to predicted cross sections
- Apply selection cuts
- Measure cross section
- Apply $m_{Z'}$ measurement method
- Determine resolution on $m_{Z'}$

Cross section measurement

- Int. luminosity = $1 ab^{-1}$ (≈ 3 years at CLIC)
- Event Selection efficiency = 0.884 ± 0.005

$m_{Z'}$	events yield	True cross sect.	Measured cross sect.
200	12094	$14.9\mathrm{fb}$	$(13.7\pm0.2)\mathrm{fb}$
300	7411	8.7 fb	$(8.4\pm0.1){\rm fb}$
400	2150	2.4 fb	$(2.4 \pm 0.04){ m fb}$
500	1192	1.2 fb	$(1.3 \pm 0.02){ m fb}$
600	815	0.8 fb	$(0.9\pm0.02)\mathrm{fb}$
700	642	$0.5{ m fb}$	$(0.7\pm0.02)\mathrm{fb}$

The s₂ parameter

$m_{Z'}$	events yield	significance	<i>s</i> ₂	measured $m_{Z'}$
200	12094	92.7	2529 ± 5.1	$217 \text{GeV}/c^2$
300	7411	66.6	2448 ± 7.7	294 GeV/ <i>c</i> ²
400	2150	24.6	2342 ± 19.7	$395 \mathrm{GeV}/c^2$
500	1192	13.5	2282 ± 39.5	454 GeV/ <i>c</i> ²
600	815	8.4	913 ± 82	$1756{ m GeV}/c^2$
700	642	5.6	962 ± 78	$1710 \mathrm{GeV}/c^2$

• Below 1000 events, the fit fails

• $m_{Z'}$ measurement possible from 200 to 500 GeV/ c^2 ($\mathbb{Q}\int \mathcal{L} = 1 \text{ ab}^{-1}$)

Measurement of process cross section and Z' mass Results

Resolution on $m_{Z'}$

- $m_{Z'}(s_2) = \frac{k-s_2}{\alpha}$
- Error on $m_{Z'}$:

Measurement of process cross section and Z' mass Results

Resolution on $m_{Z'}$

•
$$m_{Z'}(s_2) = \frac{k-s_2}{\alpha}$$

• Error on $m_{Z'}$:

Full simulation

• ILD-like detector for CLIC

- ILD-like detector for CLIC
- $\bullet~$ CLIC 3 ${\rm TeV}$ beamstrahlung

- ILD-like detector for CLIC
- CLIC 3 TeV beamstrahlung
- $\gamma\gamma \rightarrow hadrons$ background ($\approx 3/BX$)

- ILD-like detector for CLIC
- CLIC 3 TeV beamstrahlung
- $\gamma\gamma \rightarrow hadrons$ background ($\approx 3/BX$)
- Pandora PFA reconstruction

- ILD-like detector for CLIC
- CLIC 3 TeV beamstrahlung
- $\gamma \gamma \rightarrow hadrons$ background ($\approx 3/BX$)
- Pandora PFA reconstruction

Full simulation

- ILD-like detector for CLIC
- CLIC 3 TeV beamstrahlung
- $\gamma \gamma \rightarrow hadrons$ background ($\approx 3/BX$)
- Pandora PFA reconstruction

Without $\gamma \gamma \rightarrow hadrons$

with $\gamma \gamma \rightarrow hadrons$

• RS DM candidate = RH neutrino ν'

- RS DM candidate = RH neutrino ν'
- Z' = neutral gauge boson for interaction with ν'

- RS DM candidate = RH neutrino ν'
- Z' = neutral gauge boson for interaction with ν'
- Z' produced in the channel $e^+e^-
 ightarrow t \overline{t} Z'$

- RS DM candidate = RH neutrino ν'
- Z' = neutral gauge boson for interaction with ν'
- Z' produced in the channel $e^+e^-
 ightarrow t \overline{t} Z'$
- $Z' \rightarrow \text{inv.}$ detectable for mass $\in [0.2, 0.8] \text{ TeV}/c^2 (\int \mathcal{L} = 1 \text{ ab}^{-1})$

- RS DM candidate = RH neutrino ν'
- Z' = neutral gauge boson for interaction with ν'
- Z' produced in the channel $e^+e^-
 ightarrow t \overline{t} Z'$
- $Z' \to \text{inv.}$ detectable for mass $\in [0.2, 0.8] \text{ TeV}/c^2$ $(\int \mathcal{L} = 1 \text{ ab}^{-1})$
- $m_{Z'}$ precision better than 10% if $m_{Z'} \in [0.2, 0.5] \, {
 m TeV}/c^2$

- RS DM candidate = RH neutrino u'
- Z' = neutral gauge boson for interaction with ν'
- Z' produced in the channel $e^+e^-
 ightarrow t \overline{t} Z'$
- $Z' \rightarrow \text{inv.}$ detectable for mass $\in [0.2, 0.8] \text{ TeV}/c^2 \ (\int \mathcal{L} = 1 \text{ ab}^{-1})$
- $m_{Z'}$ precision better than 10% if $m_{Z'} \in [0.2, 0.5] \, {
 m TeV}/c^2$
- Measurement maybe harder with finite detector resolution + machine background

A note about the work related here can be found <u>here</u>

Kaustubh Agashe and Géraldine Servant.
 Warped unification, proton stability, and dark matter.
 Phys. Rev. Lett., 93(23):231805, Dec 2004.

Geneviève Bélanger, Alexander Pukhov, and Géraldine Servant. Dirac neutrino dark matter.

Journal of Cosmology and Astroparticle Physics, january 2008. doi: 10.1088/1475-7516/2008/01/009.

 C.B. Jackson, Géraldine Servant, Gabe Shaughnessy, Tim M.P. Tait, and Marco Taoso.
 Higgs in space!

Journal of Cosmology and Astroparticle Physics, 2010(04):004, 2010.

Geneviève Bélanger

Jean-Jacques Blaising

Marco Battaglia

Géraldine Servant

Alexander Pukov

Peter Skands

Catherine Adloff Yannis Karyotakis Jan Blaha Maximilien Chefdeville