the T-REX project: Micromegas readouts for Rare Event Searches

> Theopisti Dafni Universidad de Zaragoza

ICPP, 20-25 June 2011, Istanbul

Outline

T-REX: MM readouts for rare event searches MM for axion searches: CAST MM for $\beta\beta$ searches: NEXT Radiopurity Measurements Conclusions

Rare Event Searches: topology can be the key

Gas TPCs can do it

T-REX: merge MPGDs (Micromegas) + low background techniques

Focus on R&D and small scale prototyping ERC St-G funded. IDEAS program.

es Gas TPCs opping Voto New Generation of Rare Event Searches

Novel

MPGD

Low Background Techniques

T-REX: infrastructure

New gas detector lab at UNIZAR

Two-region gaseous detector:

Conversion region

Primary ionization Charge drift

Amplification region

Charge multiplication Readout layout

- Strips (1or 2 D)
- Pixels

Separated by a Micromesh: Very strong and uniform electric field

Giomataris et al. (1996)

Advantages: Simplicity Granularity Homogeneity Large areas

. . .

Micromegas

Micromegas

2010 JINST 5 P02001

Bulk & microbulk techniques developped for all-in-one fabrication

- Ease of operation
- Large areas

$\mu \mathbf{M} \text{ for axion searches:}$ CAST

S. Aune et al., 2009 NIMA604 15-19 2009 JPCS179 012015 J. Galán et al., 2010 JINST 5 P01009 S. Andriamonje et al., 2010 JINST 5 P02001 T. Dafni et al., 2011 NIM A 628 172-176 presented at: Blois 2010, Vienna Instrumentation 2010, EXRS2010, TPC Symposium 2010, Moriond2010

CAST experiment @ CERN

Transarsonagenetics and Bal

Axions: hypotetical particles solving the strong CP problem, and possible dark matter candidates. Produced by the Sun by photon-to-axion conversion of the solar plasma photons Detectable via "helioscope concept" (Sikivie, 83) very low background X-ray detectors are necessary CAST uses •3 microbulk micromegas •a CCD-X-ray focusing device system

<u>Microbulks</u> in CAST

2 microbulks at SUNSET

1 microbulk at SUNRISE

Low intrinsic radioactivity: Light mass, clean materials (copper, plexiglass,...) Signal topology → offline analysis 2D readout pattern, Time information Shielding archeological lead, inner Cu, N₂ flushing.

Background Level history at CAST

Microbulks in Zgz and Canfranc

Going Underground (Laboratorio Subterraneo de Canfranc): << cosmics Stable environmental conditions Better and thicker shielding Simulation works to build a background model Goal: to design a new detector with improvements implemented

$\mu M \text{ for } \beta\beta \text{ searches:} \\ \textbf{NEXT}$

F.J.Iguaz et al. J. Phys.: Conf Series 179 (2009) 012007 T. Dafni et al., NIM A 608 (2009) 259-266 A. Tomas et al., 2009 JINST 4 P11016 S. Cebrian et al., JCAP (2010) 010

Presented in:

Vienna Instrumentation 2010, IDM2010 (Montpellier), Neutrino2010 (Athens), ICHEP2010 (Paris), TPCSymposium 2010(Paris)

MM readouts for $\beta\beta$

Neutrinoless double beta decay would provide important information: ✓on the neutrino nature (Majorana or Dirac) ✓on the neutrino mass scale

Energy resolution is the only way to distinguish 0v from 2v.

2 v66: Standard process, observed in about 10 isotopes so far

0 v88: Only possible if the neutrino has a mass and is Majorana particle. Yet to be seen

A high-pressure, 100kg gaseous Xe TPC to look for the $0\nu\beta\beta$ decay of ¹³⁶ Xe

Project Baseline:

An electroluminescence TPC where the energy is measured with PMTs and the topology is given by SiPM.

Parallel study:

Equip the detector with Microbulk Micromegas and perform the energy and topology measurement through the charge collection

Advances on the R&D related to this option

NEXT-0-MM Setup

NEXT-0-MM

Stainless Steel UHV specs. bakeable Low outgassing materials 2 liter volume Max P 12 bar 6 cm drift **Goal:** tests small microbulk readouts in diverse conditions of high pressure Xe

Microbulk Micromegas

Field Cage

6 copper rings

3 Peek columns

6 resistors of $10M\Omega$

NEXT-0-MM Tests in Argon-Isobutane

$\begin{array}{c} \textbf{NEXT-0-MM} \\ \textbf{Tests with } \alpha \text{ in Pure Argon} \end{array}$

Using an ²⁴¹Am source

Tests performed in high pressures, reaching 8 bar.

$\begin{array}{l} \textbf{NEXT-0-MM} \\ \textbf{Tests with } \alpha \textbf{ in Pure Xenon} \end{array}$

NEXT-0-MM Measurements with γ in Pure Xenon

²⁴¹Am source upside down blocks the α allows the 59.54 keV γ

Ar-2% Isobutane @1bar reduced T2K electronics version

$\begin{array}{c} \mathbf{NEXT-0-MM} \\ \alpha \ \mathbf{tracks} \ \mathbf{in} \ \mathbf{Ar-Iso} \end{array}$

NEXT-0-MM α tracks in pure Ar

Map for event 19 event N19 channel N28 StripsMap 2500 DOP time bin channe **Event 19 reconstructed** Time (tmp bin) 300-300-200-X (column) Y (row)

Pure Ar @1.23 bar

reduced T2K electronics version

NEXT-0-MM Xe-mixtures

Gaus Fit

22 keV

Res.(%FWHM) = 12.58 ± 0.09

 χ^2 /NDF = 1.47

700

800

Systematic study of Xe-TMA with Micromegas ongoing. Very first results promising: High gains achievable (>10³) >> gains than pure Xe at same voltage (Penning effect) 1% resolution seems to be at hand More work ongoing

Data with Xe-Ne also taken:

Extrapolates to 1.2 % FWHM at Qββ

200 300 400

22 keV

4 bar, Xe-TMA 2.4%

500 600

7000

6000

5000

Counts 2000 3000

2000

1000

100

Higher gains than pure Xe Energy resolution probably better, at least the same (not conclusive) Fi

First data ever taken with MM in this gas, to our knowledge

NEXT-1-MM

Bigger Prototype for ~1kg of Xe (at 10 bar)

test microbulk readouts in realistic conditions e- tracks fully contained

Inner Volume of 74 litres(600mm height, Ø 396mm)

Tested for operation at high pressure (15 bar)

Steel structure to manipulate the vessel with a crane

► Using the same gas system as for NEXT-0

Heating and insulation systems

Equipping NEXT-1-MM

Field Cage

35 cm drift height
34 rings
Inner ring Ø 28cm
Outer ring Ø 30cm
4 PEEK columns
35 resistors
70 PEEK screws

330 M Ω total resistivity For drift fields of ~ kV/cm need to supply 35kV

Special HHV FT are studied

Cirlex foil between field cage and vessel walls

Bulk Micromegas

Active region Ø ~30cm 1252 pixels independently read

First Tests

Reading the mesh

First pulses (muons and alpha events)

Rn source diffused in Ar - 2%Iso at 1 bar All volume active

First Pulses

First alpha tracks in Ar with AFTER-based DAQ with a Bulk readout

First tracks Map for 3000 2500 2000 1500 1000 500 2020 -15 -10 10 15 20 -5

Now installing microbulk readout

Microbulks in 4 sectors

NEXT-1-MM Reading the pixels

Event 26 reconstructed Ar-2% Isobutane NEXT-1-MICROMEGAS 2220 Rn source 200 180-160-Alpha (Rn) event! €140 =120 100 l bar 80 Run68 60 Zaragoza 21th October 2010 40 00 DD 20 -4 -6 -7 -8 -9 -10 -11 -12 Y (row) -10 -12 -14 X (column) 300 -16 -18 250 3000 10 200 0 2500 150 2000 -5 1500 100 -10 1000 500 -15 500 -20-20 15 20 -15 -10 10 100 200 300 400 500 -5 time bin

NEXT-1-MM Reading the pixels

First events in Xe !

WORK IN PROGRESS

ed from T2KrawEvent

Radiopurity measurements

S. Cebrian et al., Astropart. Phys (2010) doi:10.1016/j.astropartiphys.2010.09.003

Radiopurity measurements

Rare event searches dictate the use of radiopure materials important parameter for the big-scale experiments Necessary to know the quantity, nature and origin of the contamination

Microbulks are mostly Cu & Kapton potentially very radiopure Several samples measured with HPGe at Canfranc

2 samples of raw material (double clad kapton foil)2 samples detached from old CAST detectors

HPGe detector in Canfranc

Radiopurity measurements results

Results (in μ Bq/cm ²)	²³² Th	²³⁵ U	²³⁸ U	⁴⁰ K	⁶⁰ Co
Microbulk mM	<9.3	<13.9	26.3±13.9	57.3±24.8	<3.1*
Kapton-Cu foil	<4.6*	<3.1*	<10.8	<7.7*	<1.6*
Cu-Kapton-Cu foil	<4.6*	<3.1*	<10.8	<7.7*	<1.6*

^{*}Level obtained from the Minimum Detectable Activity of the detector

 \checkmark Very low levels of radioactivity, compatible with the sensitivity of the measurement

Contamination probably comes from the treatment of the materials used
 Next steps: identification of the contaminating steps and find alternatives

S. Cebrian et al., Astropart. Phys 34 (2011) 354-359

Summary

The T-REX project

Microbulk Micromegas readouts are of most interest for such applications. Examples of development within this scope:

 \checkmark For axions, in CAST:

Stability of operation

•Very low backgrounds: $< lx 10^{-6} c/s/keV/cm^2$ in CAST, with potentials to go lower, closing in the intrinsic resolution with measurements in Canfranc at $- 2x 10^{-7} c/s/keV/cm^2$

 \checkmark For double beta decay, in NEXT

•Operation at high pressures

•Energy Resolutions of :

1.96 % (FWHM) at 4 bar of pure Xe for 5.5 MeV α 9.5 % (FWHM) at 3.5 bar of pure Xe for 60keV γ 2.4%(FWHM) at 3.4 bar of Xe-2.4%TMA for 22kev γ

The microbulk planes present very low radioactivity levels Microbulk Micromegas gather all the necessary characteristics

Microbulk scaling-up

TREX: infrastructure

~90 m² extra space for the project being equipped...

Thank you for your attention

NEXT-0 Tests with α in Pure Xenon

When going to higher pressures the effect of attachment can be clearly seen

Radiopurity measurements

Results (in µ Bq/cm ²)	²³² Th	²³⁵ U	²³⁸ U	⁴⁰ K	⁶⁰ Co
Microbulk mM	<9.3	<13.9	26.3±13.9	57.3±24.8	<3.1*
Kapton-Cu foil	<4.6*	<3.1*	<10.8	<7.7*	<1.6*
Cu-Kapton-Cu foil	<4.6*	<3.1*	<10.8	<7.7*	<1.6*

*Level obtained from the Minimum Detectable Activity of the detector

S. Cebrian et al., Astropart. Phys (2010) doi:10.1016/j.astropartiphys.2010.09.003

NEXT with Micromegas, Theopisti Dafni (UNIZAR), TPC Workshop, Paris, 14.12.2010