

Searches for Exotic new Physics at BaBar

Alberto Cervelli N Istituto Nazionale di Fisica Nucleare Università & INFN Pisa

ICPP-Istanbul 20-25 June 2011

Outline

- BaBar Detector & Dataset
- Direct search for light Higgs and Dark Matter candidates
- Lepton Flavor Violation
 - LFV in T decays
 - LFV in Y decays
- Lepton Universality

Search for light Higgs and Dark Matter Candidates

ICPP-Istanbul 20-25 June 2011

Theoretical Motivations

Higgs mechanism leads to EW breaking

BUT Higgs mass unstable after radiative corrections \Rightarrow

- A solution: MSSM with two Higgs doublets
- Need Fine tuning of EW scale
- Solution: Higgs singlet (NMSSM) \rightarrow Mixing of singlet with MSSM Higgs produces CP-odd A⁰ PRD 76, 051105(2007)

Another interpretation is A⁰ is an Axion like particle Phys.Rev.D79:075008,2009

Possible solution for both Dark Matter puzzle AND Higgs sector

Channels studied $\Upsilon(3S,2S) \rightarrow \gamma A^0 A^0 \rightarrow \mu^+ \mu^ \Upsilon(3S) \rightarrow \gamma A^0 A^0 \rightarrow \tau^+ \tau^-$

 $\Upsilon(3S) \rightarrow \gamma A^0 A^0 \rightarrow \text{invisible}$

$\Upsilon(3S,2S) \rightarrow \Upsilon A^0, A^0 \rightarrow \mu^+ \mu^-$

Signature:

- \bullet two charged tracks, one identified as μ
- one energetic photon E_{γ} >200MeV
- Kinematic fit of $\gamma\mu\mu$ vertex

Analysis Method:

- Scan $\mu\mu$ invariant mass for A^0 peak evidence
- Background shapes taken from data
- Some resonances region excluded from the fit
- Fit in 300 MeV window in 2-5 MeV steps (1951 points)
- Scan range 0.212 GeV $< m_A^0 < 9.3$ GeV
- Fluctuation observed (max = 3.1σ) consistent with expected statistical fluctuations

$\Upsilon(3S) \rightarrow \Upsilon A^0$, $A^0 \rightarrow invisible$

ICPP-Istanbul 20-25 June 201 I

8

$\Upsilon(3S) \rightarrow \Upsilon A^0, A^0 \rightarrow T^+T^-$

Signature:

- Looking for $\tau^+ \rightarrow e^+ \nu \nu$ and $\tau^+ \rightarrow \mu^+ \nu \nu$
- E_Y > 100 MeV
- Exactly 2 tracks identified as leptons
- Missing energy precludes kinematic fit $\rightarrow A^0$ mass obtained from E_Y and known CM energy
- \bullet Bkg suppression provided by 8 kinematic and angular variables, optimized in 5 ranges of $E_{\rm Y}$
- •Bkg mostly due to radiative T-pair production and 2 photons processes

Method:

- Scans for peaks in E_{γ} spectrum in the range 4.03 GeV < m_A^0 < 10.10 GeV (307 points)
 - •signal represented as peaking contribution of known width
 - •simultaneous fit to eey, $\mu\mu\gamma$, and e $\mu\gamma$

ICPP-Istanbul 20-25 June 201 I

Constraints on NP no excess signal for $\Upsilon(3S) \rightarrow \gamma A^0$, $A^0 \rightarrow \tau^+ \tau^-$ UL with 90% CL put $2M(\tau) < M(A^0) < 7.5 \text{ GeV/c}^2$ $\mathcal{B}(\Upsilon(3S) \to \gamma A^0) \times \mathcal{B}(A^0) \to \tau^+ \tau^-)$ 7.5<M(A⁰)<8.8 GeV/c² PRD 81,075003 (2010) $< (1.5 - 16) \times 10^{-5} (90\% CL)$ 10^{-2} 8.8<M(A⁰)<2M(b) GeV/c² $\mu = 150 \text{ GeV}, \text{ any}$ BR(Y(3S) → γA°). BR(A° → ττ) · 10⁻³ (a) 10⁻³ BABAR BR(A°→πτ) 10^{-4} BR(Y(3S)→γA⁰). 10^{-5} (b) Total uncertainty 90% C.L. UL Statistical uncertainty only 10-4 10^{-6} 10-5 10-6 10 10^{-7} M(A^o) GeV/c² -0.50.0 0.5

ICPP-Istanbul 20-25 June 201 I

Lepton Flavor Violation

ICPP-Istanbul 20-25 June 201 I

LFV in T decays theory

SM allows LFV: observed in neutral sector.

In charged sector may happen via loops with small expected BR (e.g. $BR_{SM}(\tau \rightarrow \mu \gamma) < 10^{-54}$).

If detected with present datasets, LFV would imply New Physics.

Many New Physics models predict τ LFV BR up to present experimental limits.

If detected in more than one channel it providesuseful information on NP flavor structure, by looking at LFV BF Ratios. [PhysRevD.76.013004]

ICPP-Istanbul 20-25 June 201 I

Analysis strategy

Low multiplicity events selected and event space divided in two hemispheres using thrust.

- •Signal side: tracks and neutrals coming from LFV decay
- •Tag side: standard 1-prong decay (also 3-prong in $\tau \rightarrow \mu \gamma$)

Blind analysis performed

Background reduced using PID, kinematical informations, multivariate algorithms $(\tau \rightarrow \mu \gamma)$ optimization different for each channel:

•All selection optimized for best UL

Number of expected background events estimated from non blinded sidebands. UL estimated using frequentist approach including systematics errors.

Analysis strategy

Low multiplicity events selected and event space divided in two hemispheres using thrust.

•Signal side: tracks and neutrals coming from LFV decay

•Tag side: standard 1-prong decay (also 3-prong in $\tau \rightarrow \mu \gamma$)

Blind analysis performed

Background reduced using PID, kinematical informations, multivariate algorithms $(\tau \rightarrow \mu \gamma)$ optimization different for each channel:

•All selection optimized for best UL

Number of expected background events estimated from non blinded sidebands. UL estimated using frequentist approach including systematics errors.

Analysis strategy

Low multiplicity events selected and event space divided in two hemispheres using thrust.

•Signal side: tracks and neutrals coming from LFV decay

•Tag side: standard 1-prong decay (also 3-prong in $\tau \rightarrow \mu \gamma$)

Blind analysis performed

Background reduced using PID, kinematical informations, multivariate algorithms $(\tau \rightarrow \mu \gamma)$ optimization different for each channel:

•All selection optimized for best UL

Number of expected background events estimated from non blinded sidebands. UL estimated using frequentist approach including systematics errors.

Analysis strategy

Low multiplicity events selected and event space divided in two hemispheres using thrust.

•Signal side: tracks and neutrals coming from LFV decay

•Tag side: standard 1-prong decay (also 3-prong in $\tau \rightarrow \mu \gamma$)

Blind analysis performed

Background reduced using PID, kinematical informations, multivariate algorithms $(\tau \rightarrow \mu \gamma)$ optimization different for each channel:

•All selection optimized for best UL

Number of expected background events estimated from non blinded sidebands. UL estimated using frequentist approach including systematics errors.

Analysis strategy

Low multiplicity events selected and event space divided in two hemispheres using thrust.

•Signal side: tracks and neutrals coming from LFV decay

•Tag side: standard 1-prong decay (also 3-prong in $\tau \rightarrow \mu \gamma$)

Blind analysis performed

Background reduced using PID, kinematical informations, multivariate algorithms $(\tau \rightarrow \mu \gamma)$ optimization different for each channel:

•All selection optimized for best UL

Number of expected background events estimated from non blinded sidebands. UL estimated using frequentist approach including systematics errors.

1

Alberto Cervelli Universita' di Pisa

 $\Delta M (GeV/c^2)$

ICPP-Istanbul 20-25 June 2011

 $\mu^{+}\mu^{-}\mu^{+}$

 10.2 ± 0.6

 6.6 ± 0.6

 0.03 ± 0.02

 0.44 ± 0.17

 2.8×10^{-8}

 4.0×10^{-8}

14

BABAR

 2.6×10^{-8}

 3.3×10^{-8}

0

0

 $\frac{BaBa}{(2S)} \Rightarrow$

Four channels studied: $\Upsilon(2S) \rightarrow \mu \tau, \Upsilon(2S) \rightarrow e \tau$ $\Upsilon(3S) \rightarrow \mu \tau, \Upsilon(3S) \rightarrow e \tau$

Signature:

- I primary lepton
- IT detected through leptonic (e or μ) or hadronic ($\pi^{\pm} + \pi^{0}(+\pi^{0})$) decays

Process	au decay	channel
$\Upsilon(3,2S) \to e\tau$	$ au o \mu \nu \bar{ u}$	leptonic $e\tau$
$\Upsilon(3,2S) \to e\tau$	$\tau \to \pi^{\pm} \pi^0 \nu \ / \ \pi^{\pm} \pi^0 \pi^0 \nu$	hadronic $e\tau$
$\Upsilon(3,2S) \to \mu \tau$	$\tau \to e \nu \bar{\nu}$	leptonic $\mu \tau$
$\Upsilon(3,2S) \to \mu \tau$	$\tau \to \pi^{\pm} \pi^0 \nu \ / \ \pi^{\pm} \pi^0 \pi^0 \nu$	hadronic $\mu\tau$

•Dominant background events:

- Bhabha and µ-pair (through particle mis-ID)
- T-pairs ($e^+e^- \rightarrow T^+T^-$)
- Multiple π and additional γ

•Selection partially common to the 4 channels, partially specific (PID, τdaughters kinematics)

PRL 104, 151802 (2010)

LFV inY decays - Results

•Discriminating variable: x = primary lepton momentum / CM beam energy

Unbinned extended maximum likelihood fit to determine signal and background yields
PDF chosen for all backgrounds:

- •signal (peaks at $x = x_{MAX} \sim 0.97$)
- •T-pairs (smooth, end-point at xMAX)

•Bhabha/ μ -pairs (peaks x~I) •hadrons (smooth, end-point at xmax) $\mathcal{B} = N_{SIG}/(\epsilon_{SIG} \times N_{\Upsilon(nS)})$

BR calculated from signal and bkg yelds

$$\mathcal{B} = N_{SIG} / (\varepsilon_{SIG} \times N_{\Upsilon(nS)})$$

Systematics mainly from PDF shapes choice, errors accounted in UL

	$\mathcal{B}(10^{-6})$	UL (10^{-6})	Improvement
$\mathcal{B}(\Upsilon(2S) \to e^{\pm}\tau^{\mp})$	$0.6^{+1.5+0.5}_{-1.4-0.6}$	< 3.2	First
$\mathcal{B}(\Upsilon(2S) \to \mu^{\pm} \tau^{\mp})$	$0.2^{+1.5+1.0}_{-1.3-1.2}$	< 3.3	$\times 5.5$
$\mathcal{B}(\Upsilon(3S) \to e^{\pm}\tau^{\mp})$	$1.8^{+1.7+0.8}_{-1.4-0.7}$	< 3.2	First
$\mathcal{B}(\Upsilon(3S) \to \mu^{\pm} \tau^{\mp})$	$-0.80.2^{+1.5+1.4}_{-1.5-1.3}$	< 3.3	$\times 3.7$

ICPP-Istanbul 20-25 June 201 I

Lepton Universality

ICPP-Istanbul 20-25 June 201 I

Theory

In SM the interactions between gauge bosons and leptons do not depend on lepton flavor

Hence $R_{\ell\ell'} = \frac{\mathcal{B}(\Upsilon(1S) \to \ell\ell)}{\mathcal{B}(\Upsilon(1S) \to \ell'\ell')}$

expected to be ~1 in SM, except for phase space ($R_{\tau\mu}$ =0.992)

r b γs Λ⁰ h intermediate state or bb continuum

In NSSM: deviation from R_{II} comes from the $\Upsilon(1S) \rightarrow \eta_b \gamma, A^0 \leftrightarrow \eta_b \rightarrow \ell^+ \ell^$ presence of A⁰ and mediate the decay $\Upsilon(1S) \rightarrow A^0 \gamma, A^0 \rightarrow \ell^+ \ell^-$ If photon is not detected lepton pair abscribed to A⁰ It can result in a deviation from SM \rightarrow NP effect Effect more evident if the lepton is a T (4% effect)

Analysis Strategy

- Υ (IS) tagged with Υ (3S)→ $\pi^+\pi^-\Upsilon$ (IS) with Υ (IS)→ $\mu\mu/\tau\tau$ •BF (Υ (3S)→ $\pi^+\pi^-\Upsilon$ (IS)) ~4.5%
- Only 1 prong T decay selected
 Exactly 4 tracks in the final state
- No selection on extra photons Separate selection for $\Upsilon(IS) \rightarrow \mu\mu$ ($\epsilon \sim 45\%$) and $\Upsilon(IS) \rightarrow \tau\tau$ ($\epsilon \sim 17\%$)
- Bkg classified in light $q\overline{q}$, τ -pairs, QED events, $\Upsilon(IS)$ decays
- Multivariate approach for $\Upsilon(IS) \rightarrow \tau \tau$ selection, efficiency and signal yields extracted with signal MC

t is either μ or τ decay product

ICPP-Istanbul 20-25 June 201 I

Signal Extraction

Results

Improvement in precision w.r.t. previous CLEO measurement

 $R_{\tau\mu}(\Upsilon(IS)) = 1.02 \pm 0.02_{stat} \pm 0.05_{syst}$

Main systematics (up to 2.2%): selection efficiency, muon PID, signal and bkg shape model, peaking background yield, trigger efficiency

$R_{\tau\mu}(\Upsilon(IS)) = 1.005 \pm 0.013_{stat} \pm 0.022_{syst}$

PRL 104, 191801 (2010)

No significant difference w.r.t. SM expectation.

Exclusion of $M(A^0) < 9GeV @90\% CL$

Conclusion

- B-Factories have proven to be versatile machines for the search for new physics in over a decade
- New physics may be looked for through different processes ranging from B physics, τ decays and Y(nS) decays
- Thanks to the high luminosity achieved and the constant development of new analysis tecniques results have greatly improved over the years
- Many bounds on NP models parameters were set thanks to B-Factories
- Many new results were presented in the last year and many more are incoming

attention

ICPP-Istanbul 20-25 June 2011