Searches for new physics at ATLAS

Gökhan Ünel/ *U.C. Irvine* 20/06/2011

On behalf of the ATLAS collaboration

ICPP 2011 Istanbul

Outline

- Limits from resonances
 - dijets
 - dileptons : Z' & Contact IA
 - dileptons : W' bosons
 - diphotons : Gravitons
 - ttbar
 - New particle searches
 - 4th generation quarks
 - Lepto-quarks
- Susy Searches

LHC has been giving us data at ever increasing pace. $L_{int} = 1$ fb⁻¹ reached as of 17th June 2011.

introduction: SM

Fermions as matter particles

Quarks & Leptons

Gauge group structure
 gauge bosons as force carriers

EW Symmetry Breaking
 mass via Higgs bosons

SM is like your old car: you like it but you also know it has problems...

SM can not be the final theory:

- Hierarchy problem: $\delta H \sim M_H$
- EW and Strong forces not unified
- Arbitrary fermion masses & mixings
- Arbitrary number of families
- Unknown source of baryogenesis

▶ 3+1 space-time

introduction: SM to BSM

di-jet Resonances

These '2 \rightarrow 2' scattering processes are well described within SM

- sensitive to new phenomena
- Observables :
- Di-jet invariant mass
- Di-jet angular distributions of energetic jets relative to the beam axis
- Events with two highest p_T jets recoiling back to back with rapidities, y_1 and y_2

$$y^* = \frac{1}{2} \ln \left(\frac{1 + |\cos \vartheta^*|}{1 - |\cos \vartheta^*|} \right)$$

- No evidence for a bump in m_{jj}
 - X² test, p-value 0.88
 - Set exclusion limits

di-jet Limits

95% C.L. Limits (TeV)

Observable	Expected	Observed				
Exited quark q*						
m _{jj}	2.07	2.15				
F _X (m _{jj})	2.12	2.64				
Randall-Meade quantum black hole for n=6						
m _{jj}	3.64	3.67				
F _x (m _{jj})	3.49	3.78				
Axigluon						
m _{jj}	2.01	2.10				
Contact interaction A						
F _x (m _{jj})	5.72	9.51				

 m_{jj} : reconstructed invariant mass $F_{\rm x}\,$: scale at which new physics appears

di-jet 2011 updates

ATLAS-CONF-2011-081

di-lepton Resonances

Signature: Opposite charge, same flavor di-lepton $(e^+e^-/\mu^+\mu^-)$ Observable : invariant mass of di-lepton Backgrounds: Z/γ^* (Drell-Yan), QCD , tt, di-boson (WW/WZ and ZZ)W+jets Signals : leptophobic Z' (PYTHIA), Z* (CompHEP using CTEQ6L1)

di-lepton Limits

Previous lower Limits [TeV] assuming SM couplings

	W'	Ζ'		
CDF	1.12	1.071		
D0	1.0	1.023		

- No evidence for resonance
 - The e⁺e⁻/µ⁺µ⁻ combined mass limits @95 C.L.

M_{Z'} (SSM) > 1.407 TeV

 $M_{Z^*} > 1.152 \text{ TeV}$ (first limit on Z* mass)

E6	Ζ' ψ	Z' _N	Ζ'η	Z'I	Z's	Ζ'χ
Mass limit (TeV)	1.116	1.142	1.150	1.203	1.230	1.259

di-leptons on contact Interactions arxiv:1104.4398

$$L = \frac{g}{2\Lambda^2} [\eta_{LL}\overline{\psi}_L\gamma_\mu\psi_L\overline{\psi}_L\gamma^\mu\psi_L + \eta_{RR}\overline{\psi}_R\gamma_\mu\psi_R\overline{\psi}_R\gamma^\mu\psi_R + 2\eta_{LR}\overline{\psi}_L\gamma_\mu\psi_L\overline{\psi}_R\gamma^\mu\psi_R$$

g : coupling constant Λ : energy scale below which fermion constituents are bound $g/\Lambda^2=1$ and η_{LL} , η_{LR} , $\eta_{RR}=1$

10

Use the same event selection as in heavy resonance searches

• Signal broad deviation from SM not a peak 95%C.L. Λ^- >4.9 TeV Λ^+ > 4.5 TeV

Signature :

- High p_T isolated lepton (e, μ) and large missing energy
- Observable :
 - Transverse mass $m_T = \sqrt{2 p_T E_T^{miss} (1 \cos \varphi_{lv})}$

Backgrounds

• $W \rightarrow I v$ (irreducible) Drell-Yan, ttbar, di-boson QCD multi-jet,

Cosmic rays (from data) Signal W' (PYTHIA), W* (CompHep using CTEQ6L1)

muon channel

ш

arxiv:1103.1391

electron channel

e/μ combined result for W'

e/μ combined result for W*

- No evidence found
- Lower limits on W' and W* are set at 95% C.L
- $m_{W'}$ > 1490 GeV and m_{W^*} >1350 GeV

W' and W* 2011 updates

di-photons on RS Gravitons

ATLAS-CONF-2011-044

 RS introduces an extra spatial dimension (ED) to resolve hierarchy problem

• TeV scales \Rightarrow Plank scale $\Lambda_{\pi} = 1/\sqrt{8 \times M_{Pl}} \exp(k \pi r_c)$ (k=curvature, r_c : ED radius)

Massive graviton excitations Kaluza-Klein (KK) tower $m_G > 545 (920) \text{ GeV for } k/M_{Pl} = 0.02 (0.1) @ 95 C.L.$ (m_G limits for coupling 0.01 and 0.1 by D0: 560 and 1050 GeV CDF : 459 and 963 GeV)

ttbar Resonances

15

- Signature : (At least one W reconstructed leptonically):
 - High pT isolated lepton (e,µ), jets and large missing energy
- Observable :
 - Invariant mass of ttbar computed from the reconstructed objects in the final state
 - Objects are not assigned to either of the t (i.e. no t reconstruction)
- Two methods to reconstruct ttbar:
 - 4 hardest jets four highest pT jets
 - dRmin method as "4 hardest jet", but removes jet if ΔR_{lj} > 2.5-0.015×mj

ttbar Limits

The observed cross section limits on $\sigma \times Br(Z' \rightarrow ttbar)$ ranges from 38 pb at M = 500 GeV to 2.2 pb at M=1300 GeV for leptophobic Z' Exclude $M_{gKK} < 650$ GeV @ 95% C.L.

Fourth generation quarks

200

400

ATLAS Preliminary Q, 350 GeV Collinear Mass

300

200

500

600

700

 $m_{Q4} > 270 \text{ GeV/c}^2 @ 95\% \text{ C.L.}$ 95% C.L limits by CDF: $m_{d4} > 372 \text{ GeV}$ and $m_{u4} > 356 \text{ GeV}$

ATLAS-CONF-2011-022

q

evi

eeii

depending on the lepton charge.

- Backgrounds :
- Iljj: Z+jet and ttbar and Ivjj: W+jets and ttbar

Leptoquark invariant mass or transverse mass

Observables:

arxiv:1104.4481

18

Leptoquark Limits

95% C.L. Lower limit on LQ

Type (β)	Expected limit (GeV)	Observed limit (GeV)
1st generation (1.0)	387	376
1st generation (0.5)	348	319
2nd generation (1.0)	393	422
2nd generation (0.5)	353	362

Susy Searches -1

- Squarks & Gluinos w/ final state: jets+met+ 0,1 leptons
 - 1 lepton details in arXiv:1102.2357
 - 0 lepton details in arXiv:1102.5290
 - no deviation from SM
 - squarks and gluinos of equal mass are excluded below 815 GeV at 95% CL

ATLAS-CONF-2011-064

Squarks & Gluionos 2011 updates

Susy Searches -2

22

- Stable hadronising Squarks and Gluinos (R-hadrons)
 - slowly moving stable particles with final state:
 - High pT track associated with energy depositions in the calorimeter.
 - ATLAS also sought for neutral R-hadrons

- no excess observed
 - 95%CL limits set

sbottom	stop	gluino
294	309	586

masses in GeV

Susy Searches -3

- Gluinos w/ final states : MET+ b-jets
 - no excess, Limit set @ 95%CL
 - m_{gluino}>590GeV for m_{sbottom}<500GeV arXiv:1103.4344

- Neutralinos & squarks w/ final states: MET+II
 - opposite vs same&opposite signs
 - no excess, Limit set @ 95%CL
 - m_{squark} > [450 .. 690] GeV depending on specific susy model

arXiv:1103.6208 arXiv:1103.6214

Conclusions

Very successful LHC run at 7 TeV so far.
~50 pb⁻¹ data is collected in 2010

Many BSM scenarios studied with 2010 and early 2011 data.No deviations from the SM found; yet.

TeV scale limits were set : some world's best limits

2011 data taking is going very well :

Lumi record set …

• 2011 target reached \rightarrow more than 1fb⁻¹ already collected.

Keep watching us for new results!

Backup slides

 $\boldsymbol{\chi}$ distribution is relatively flat for QCD

$$\chi \equiv \exp(|y_1 - y_2|)$$

 Fraction of di-jets produced centrally versus total number of di-jets

$$= \frac{1}{2} \left(\left[m_{jj}^{\min} + m_{jj}^{\max} \right] / 2 \right) = \frac{N_{events} \left(|y^*| < 0.6, m_{jj}^{\min}, m_{jj}^{\max} \right)}{N_{events} \left(|y^*| < 1.7, m_{jj}^{\min}, m_{jj}^{\max} \right)}$$

Many models predict additional new heavy gauge bosons beyond
 SM (W'^(*),Z'^(*))

Sequential Standard Model (SSM)

- Same coupling to fermions as SM
 - Width increases linearly with W'/Z' mass
- GUT E6 inspired Z'
 - Different model leads to specific Z' states : $Z_{\psi}, Z_N, Z_{\eta}, Z_I, Z_S, Z_{\chi}$

New Chiral boson spin 1 bosons - W*, Z*

- Excited bosons
- Different couplings to fermions (magnetic moment type)

arXiv:0801.4235v1

Differential cross section for Z' and Z* at 800GeV $< M_{\parallel} < 1200$ GeV

Leptoquarks searches

Leptoquarks – particles that carry both lepton and baryon quantum numbers

Leptoquark production from qqbar annihilation or gluon fusion (hep-ph/9808413v1)

- Many models predicts leptoquarks
 - Quark and lepton sub-structure
 - Theories seek GUT
 - Extended technicolor
- LO search LQ pair production /µ for 1st/2nd LQ generation through IIi and Ivi

$$\sigma(pp \rightarrow lljj) \equiv \sigma_{LQ} \times \beta^{2}$$

$$\sigma(pp \rightarrow lvjj) \equiv \sigma_{LQ} \times 2\beta(1-\beta)$$

$$\beta \equiv Br(LQ \rightarrow l+X)$$

arxiv:1104.4481

28

Susy Searches

Give up the (so far) observed "spin" asymmetry between matter and force carriers: partners for all SM particles

- solves Fine Tuning, DM.. problems
- SUSY not observed: sparticles <u>heavy</u>: broken symmetry
- **Rich phenomenology** (even with R_{parity}):
 - large # of parameters: >100 in MSSM case^R
 - many SB options: MSSM, mSUGRA, GMSB, AMSB..
- Common properties:
 - cascade decays of sparticles to $high p_T objects$,
 - stable LSP escapes undetected: large ET^{miss}.

Look for: jets + E_T^{miss} and leptons + jets + E_T^{miss}

has 5 parameters

has 6 parameters

di-lepton Resonances w/ 2010 data arxiv:1103.6218

Signature: Opposite charge, same flavor di-lepton $(e^+e^-/\mu^+\mu^-)$ Observable : invariant mass of di-lepton Backgrounds: Z/ γ^* (Drell-Yan), QCD , tt, di-boson (WW/WZ and ZZ)W+jets Signals : Z' (PYTHIA), Z* (CompHEP using CTEQ6L1)

muons

30

electrons

di-lepton Limits w/ 2010 data

Previous lower Limits [TeV] assuming SM couplings

	W'	Z'
CDF	1.12	1.071
D0	1.0	1.023
CMS	1.58	1.14

No evidence for resonance

 The e⁺e⁻/µ⁺µ⁻ combined mass limits @95 C.L.

 $M_{Z'}$ (SSM) > 1.048 TeV

 $M_{Z^*} > 1.152 \text{ TeV}$ (first limit on Z* mass)

E6	Ζ' ψ	Z' _N	Ζ'η	Z' ₁	Z's	Ζ'χ
Mass limit (TeV)	0.738	0.763	0.771	0.842	0.871	0.900

ttbar Resonances w/ 2010 data ATLAS-CONF-2011-070 32

- Signature : (At least one W reconstructed leptonically):
 - High pT isolated lepton (e,µ), jets and large missing energy
- Observable :
 - Invariant mass of ttbar computed from the reconstructed objects in the final state
 - Objects are not assigned to either of the t (i.e. no t reconstruction)
- Two methods to reconstruct ttbar:
 - 4 hardest jets four highest pT jets
 - dRmin method as "4 hardest jet", but removes jet if ΔR_{lj} > 2.5-0.015×mj

ttbar Limits w/ 2010 data

The observed cross section limits on $\sigma \times Br(Z' \rightarrow ttbar)$ ranges from 55 pb at M = 500 GeV to 2.2 pb at M=1000 GeV Exclude M_{QBH} < 2400 GeV @ 95 C.L.