

The Status of CLIC the Compact Linear Collider 2nd International Conference on Particle Physics in memoriam of Engin Arik and colleagues

Doğuş University, Istanbul 23rd June 2011

Ken Peach (JAI, University of Oxford)

Introduction

- (Why) do we need a linear collider

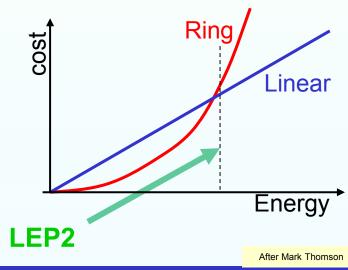
- The technology challenges
 - Cold, warm or incandescent
- The Compact Linear Collider CLIC
 - What is it
 - Status
- Summary

INTRODUCTION

Why do we need a linear collider?

Ken Peach John Adams Institute 2ND ICPP in memoriam Engin Arik & colleagues

- In order to be in the position to push the energy and luminosity frontier even further it is vital to strengthen the advanced accelerator R&D programme; a coordinated programme should be intensified, to develop the CLIC technology and high performance magnets for future accelerators, and to play a significant role in the study and development of a high-intensity neutrino facility.
- i. It is fundamental to complement the results of the LHC with measurements at a linear collider. In the energy range of 0.5 to 1 TeV, the ILC, based on superconducting technology, will provide a unique scientific opportunity at the precision frontier; there should be a strong well-coordinated European activity, including CERN, through the Global Design Effort, for its design and technical preparation towards the construction decision, to be ready for a new assessment by Council around 2010.


JA

- Re-use the particles
 - Cost: RF \propto E4/R ; Ring \propto R
 - Combined $\propto E^2$ (+c_R)
- Linear collider
 - Single pass
 - Cost: RF \propto E (+c_L)

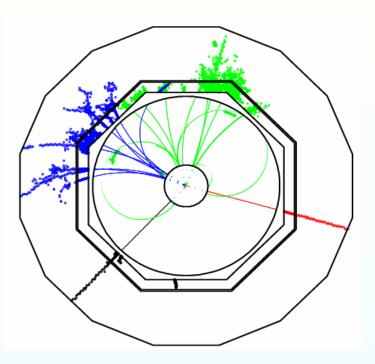
so there must be a crossover Breakpoint √s~200 GeV

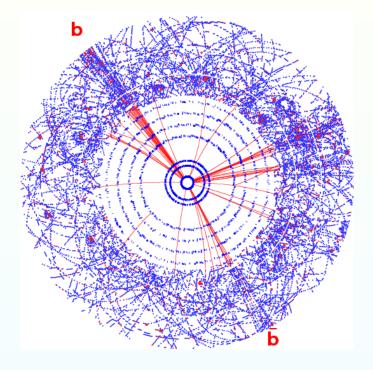
in

R

 $\Delta E \propto$

 E^4

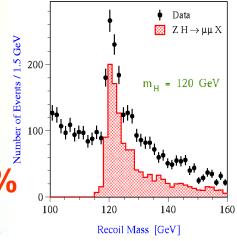

 m^4_{\odot}

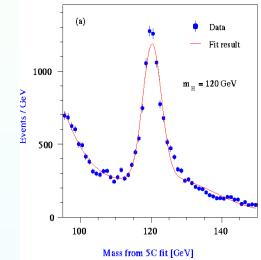


J.A.I.

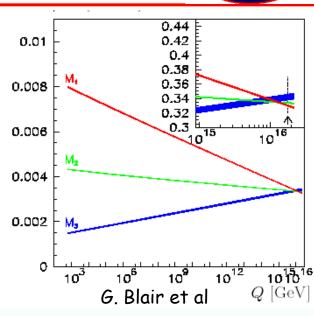
 $e^+e^- \rightarrow HZ$; $Z \rightarrow \mu\mu$

 $pp \rightarrow H + X$; $H \rightarrow bb$





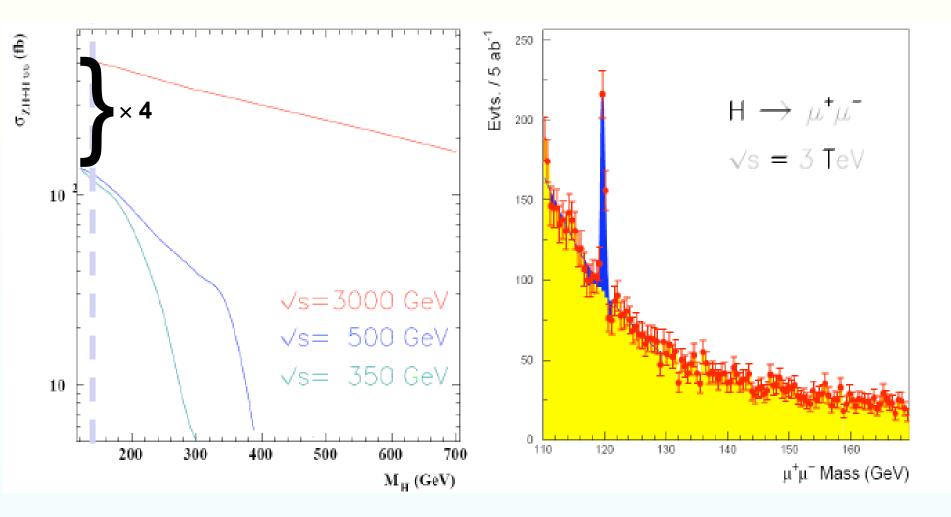
- Clean initial state (e⁺e⁻)
 - Polarization, tunable \sqrt{s} hard scattering
- Detailed study of the higgs sector
 - Mass 0.03% Couplings 1-3%
 - Spin & CP structure Total width 6%
 - Model-independent measurements
- Precision SUSY measurements
 - If it exists
 - Masses to 1% (if within reach)
 - SUSY space-time properties
- Precision top, W, TGC's etc
- New Physics (W_LW_L scattering etc ...)


Physics goals

• SUSY

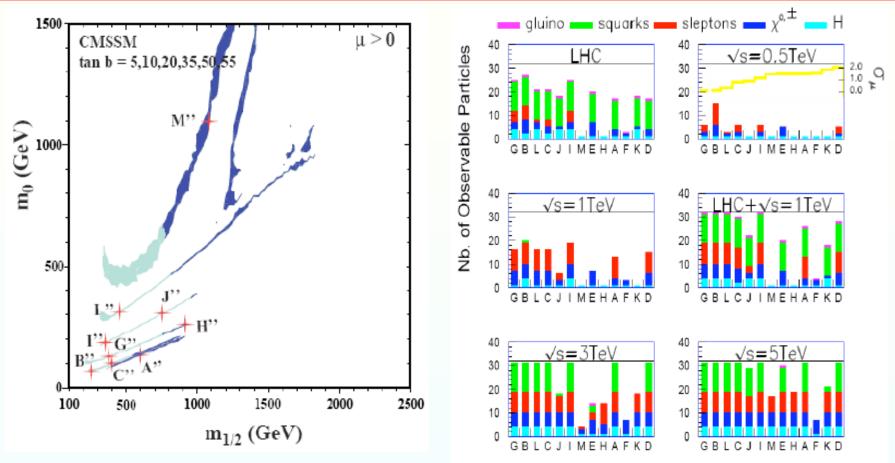
precision mass measurements

- Dark Matter
 - $-m_{\chi}$ & couplings
 - Input to cosmology [Ω_{DM}h²~ 3%]
 - Mismatch to WMAP/Planck more DM
- Quantum level consistency
 - e.g. direct & indirect m_h



F. Richard/SPS1a

8

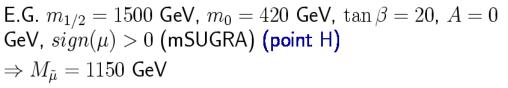

What Energy? Light Higgs (120 GeV) J.A.I.

> 400k Higgs per year

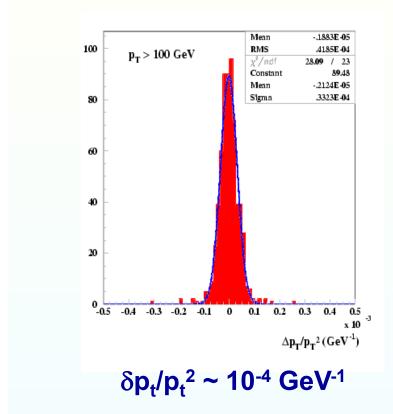
Physics case: SUSY measurements

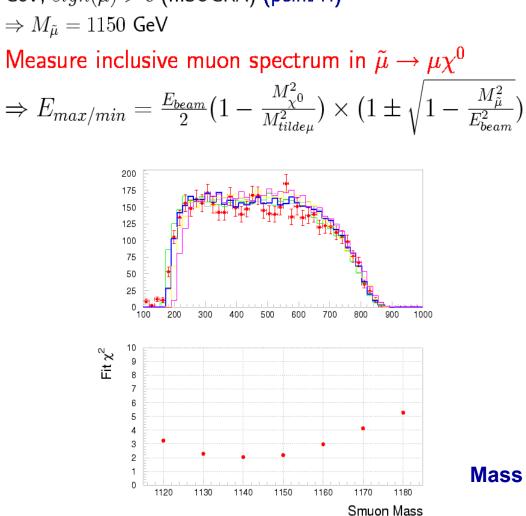
LC/LHC complementarity: precision measurements at ILC/CLIC

e.g. 1150 GeV smuon mass to O(1%)


Will a 0.5-1 TeV collider be enough?

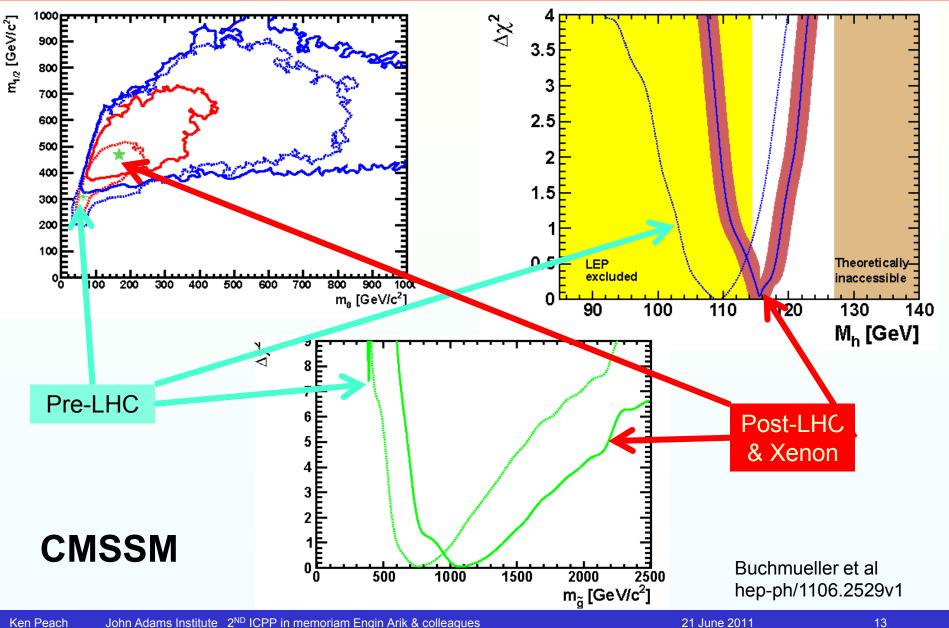
De Roeck et al, hep-ph/0508198


JAI.



Momentum resolution

Mass measurements to O(1%)



11

Implications of the LHC data 2010

JAL

dc

Latest parameters for 4 SUSY models _____

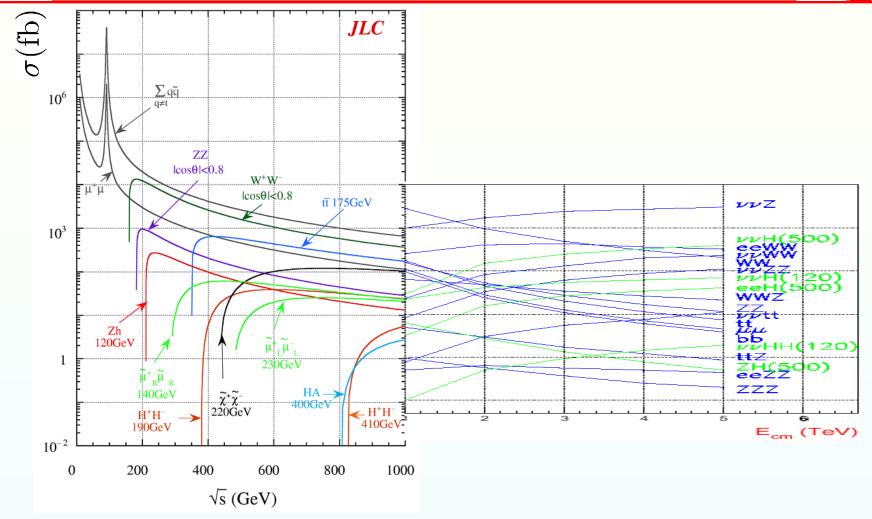
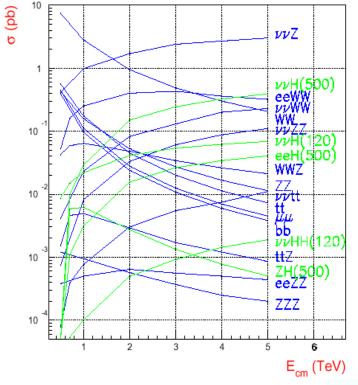

Model	Minimum	Probability	$m_{1/2}$	m_0	A_0	aneta	M_h (GeV)
	$\chi^2/{ m dof}$		(GeV)	(GeV)	(GeV)		(no LEP)
CMSSM pre-LHC	22.5/19	26%	310^{+120}_{-50}	60^{+90}_{-10}	-60^{+410}_{-840}	10^{+10}_{-4}	108.6
post-2010-LHC	26.1/19	13%	470^{+140}_{-70}	170^{+330}_{-80}	-780^{+1410}_{-820}	22^{+27}_{-13}	115.7
post-Xenon (50 ± 14)	26.2/20	16%	470^{+140}_{-70}	170^{+330}_{-80}	-780^{+1410}_{-820}	22^{+27}_{-13}	115.7
NUHM1 pre-LHC	20.5/17	25%	240^{+150}_{-50}	100^{+70}_{-40}	920^{+360}_{-1260}	7^{+11}_{-2}	119.4
post-2010-LHC	24.1/18	15%	530^{+220}_{-90}	110^{+80}_{-20}	-370^{+1070}_{-1000}	27^{+24}_{-10}	117.9
post-Xenon (50 ± 14)	24.2/19	19%	530^{+220}_{-90}	110^{+80}_{-20}	-370^{+1070}_{-1000}	27^{+24}_{-10}	117.9
VCMSSM pre-LHC	22.6/20	31%	300^{+60}_{-40}	60^{+20}_{-10}	30^{+50}_{-30}	8^{+3}_{-1}	110.0
post-2010-LHC	27.9/20	11%	470^{+150}_{-80}	110^{+110}_{-30}	120^{+300}_{-190}	13^{+14}_{-8}	115.0
post-Xenon (50 ± 14)	28.1/21	14%	470^{+150}_{-80}	110^{+110}_{-30}	120^{+300}_{-190}	13^{+14}_{-8}	115.0
mSUGRA pre-LHC	29.4/19	6.0%	550^{+170}_{-90}	230^{+80}_{-40}	430^{+190}_{-90}	28^{+5}_{-2}	107.8
post-2010-LHC	30.2/20	6.7%	650^{+70}_{-130}	270^{+50}_{-50}	530^{+130}_{-130}	30^{+4}_{-3}	122.2
post-Xenon (50 ± 14)	30.3/21	8.6%	650^{+70}_{-130}	270^{+50}_{-50}	530^{+130}_{-130}	30^{+4}_{-3}	122.2

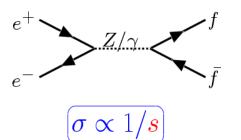
Table 1

Comparison of the best-fit points found in the pre-LHC analysis in the CMSSM, the NUHM1, the VCMSSM and the coannihilation region of mSUGRA [2, 6–8], and our latest results incorporating the CMS, ATLAS, LHCb, CDF, DØ and Xenon100 constraints. We also include the minimum value of χ^2 and the fit probability in each scenario, as well as the predictions for M_h without imposing the LEP constraint.

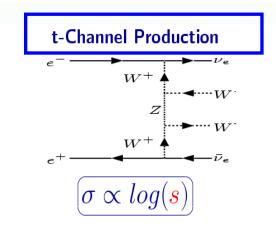
Buchmueller et al hep-ph/1106.2529v1



JAI



Cross Sections at CLIC



♦ Main production mechanisms in e^+e^- collisions at $s = 4 \times E_{beam}^2$:

s-Channel Production

Event Rates/Year	3 TeV	5 TeV	
(1000 fb^{-1})	$10^3~{ m events}$	10^3 events	
$e^+e^- ightarrow tar{t}$	20	7.3	
$e^+e^- ightarrow b\overline{b}$	11	3.8	
$e^+e^- \rightarrow ZZ$	27	11	
$e^+e^- \rightarrow WW$	490	205	
$e^+e^- \rightarrow hZ/h\nu\nu$ (120 GeV)	1.4/530	0.5/690	
$e^+e^- \rightarrow H^+H^-(1 \text{ TeV})$	1.5	0.95	
$e^+e^- ightarrow { ilde{\mu}^+}{ ilde{\mu}^-}~(1{ m TeV})$	1.3	1.0	

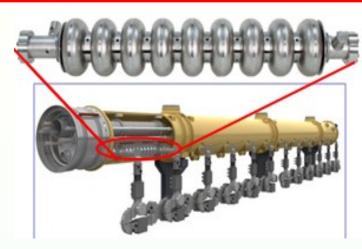
♦ Evolving from LEP-2 at $\sqrt{s} \le 209$ GeV to CLIC $\sqrt{s} \simeq 3$ TeV - 5 TeV implies reduction of σ (s-channel) cross-sections by $\simeq 15 - 25$ and σ (t-channel) $\simeq \sigma$ (s-channel).

TECHNOLOGY CHALLENGES

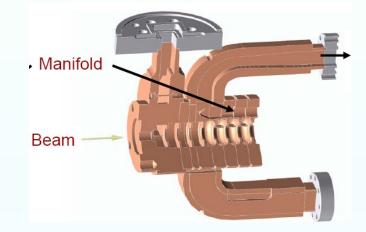
Cold, warm or incandescent?

J.A.I.

- Energy
 - Need to be well above LEP (200 GeV)
 - Preferably > 1TeV
 - Based on latest LHC results
- Luminosity
 - Falling s-channel cross-sections (\propto 1/s)
 - Increasing luminosity
 - Initial State Radiation broadens the peak
- Reliability
 - **RF**

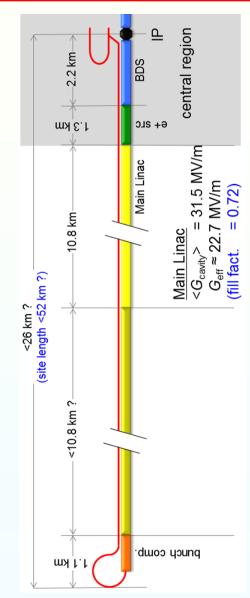

Energy

Ken Peach John Adams Institute 2ND ICPP in memoriam Engin Arik & colleagues

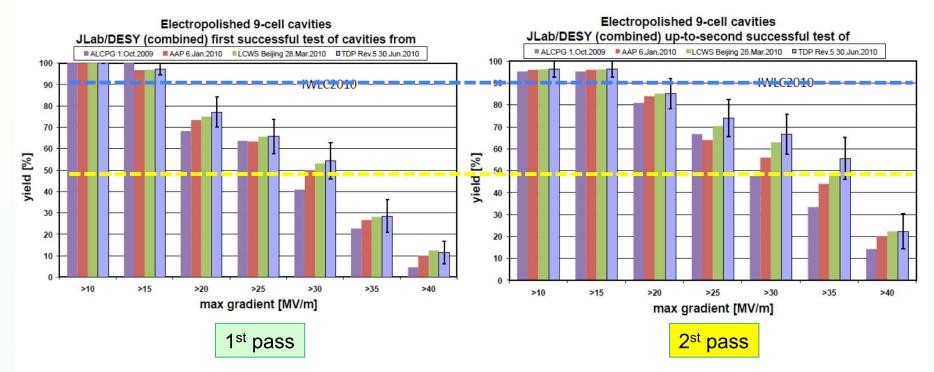


Conventional technologies

- Superconducting cavities ILC
 - 35 MV/m
 - (limit ~55MV/m)
- X-band
 - 65MV/m
 - (loaded)
- Others (C-band, S-band)


JA

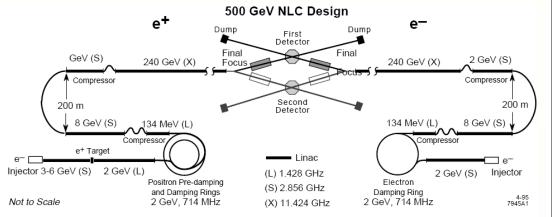
The ILC @ 1 TeV [new-ish]



Collision rate	f_{rep}	4	Hz
Number of bunches	n_b	2625	
Bunch population	N_	2	$\times 10^{10}$
Bunch seperation	Δt_b	356	ns
Pulse current	I_{beam}	9.0	mA
RMS bunch length	σ_{z}	0.3	mm
RMS energy spread (e-, e+)	$\Delta p/p$	0.105, 0.038	
Polarisation (e^-, e^+)	Ρ.	80, 22	%
Emittance (linac exit)	$\gamma \mathcal{E}_{x,y}$	10, 0.035	μm
IP beta function	$\beta_{x,y}$ *	30, 0.3	mm
IP RMS beam size	$\sigma_{x,y}^*$	554, 3.3	nm
Vertical disruption parameter	D_y	19.2	
Luminosity	L	2.70	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Fraction of luminosity in top 1%	$L_{0.01}/L$	63.5	%
Average energy loss	$\delta E_{\rm BS}$	4.9	%
Number of pairs per bunch crossing	N_{pairs}	169	
Total pair energy per bunch crossing	E_{pairs}	1084	TeV

• 1 TeV, $2.7 \times 10^{34} \text{ cm}^2 \text{s}^{-1}$

- Length <52km</p>
- Gradient 31.5 Mv/m (>50?)
- AC power 352 MW


Only contains: 2 vendors + 2 infrastructure (DESY, JLAB)

Next update: Additional Japan vendor + 2 infrastructure (KEK, FNAL/ANL)

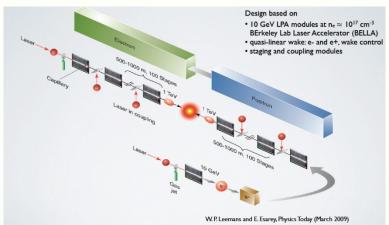
An example of an X-band design

• 1 TeV, $1.45 \times 10^{34} \text{ cm}^2 \text{s}^{-1}$

- 25.5km
- 9456 klystrons
- Klystron power 72 MW
- AC power 202 MW

	0	
0.5	1.0	1.5
7.1	14.5	16.1
180	120	120
0.7	1.1	1.1
90	75	75
1.4	1.4	1.4
500/5	500/5	500/5
10/0.1	25/0.1	37/0.15
320/3.2	360/2.3	360/2.3
100	100	100
0.09	0.27	0.41
1.3	1.4	1.5
2.3	7	9
0.8	1.1	1.1
37	63	63
14.2	17.0	25.5
20.0	25.5	36.2
3940	9456	7092
50	72	76
3.6	3.6	6.8
4.2	7.9	11.9
103	202	240
	180 0.7 90 1.4 500/5 10/0.1 320/3.2 100 0.09 1.3 2.3 0.8 37 14.2 20.0 3940 50 3.6 4.2	7.1 14.5 180 120 0.7 1.1 90 75 1.4 1.4 500/5 500/5 10/0.1 25/0.1 320/3.2 360/2.3 100 100 0.09 0.27 1.3 1.4 2.3 7 0.8 1.1 37 63 14.2 17.0 20.0 25.5 3940 9456 50 72 3.6 3.6 4.2 7.9

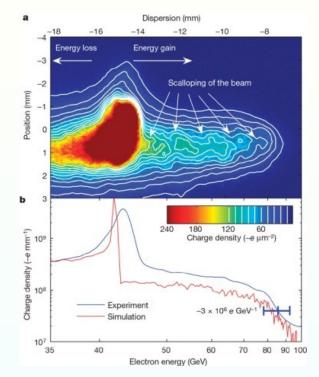
Raubenheimer et al, PAC 95


23

Ken Peach	John Adams Institute	2 ND ICPP in memoriam Engin Arik & colleagues	21 June 2011	
-----------	----------------------	--	--------------	--

Incandescent – plasma acceleration

Laser-driven plasma



Achievement (2008)

Acceleration results	Gas cell		
Peak energies	220 MeV		
Energy fluctuations	± 2.5 %		
Energy spread	> 2 % RMS		
Peak charge	~ 10 pC		
Charge fluctuations	±16%		
Divergence	0.9 mrad RMS		
Pointing stability	1.4 mrad RMS		
Injection	~ 100 %		

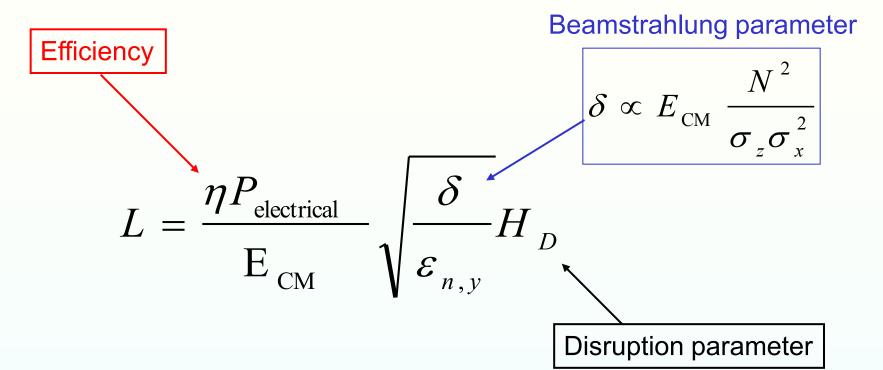
In 15mm of plasma

Beam driven plasma

- 42 GeV electron beam
- 0.85m plasma
- 42 GeV energy gain

Nature 445, 741-744 (2007)

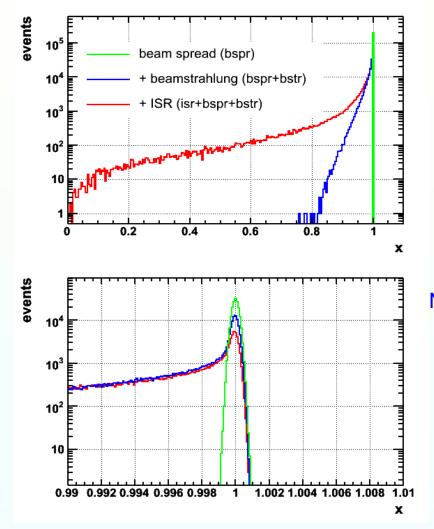
JAL

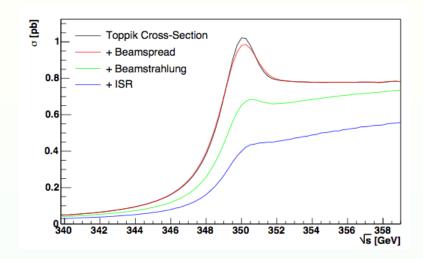


Luminosity

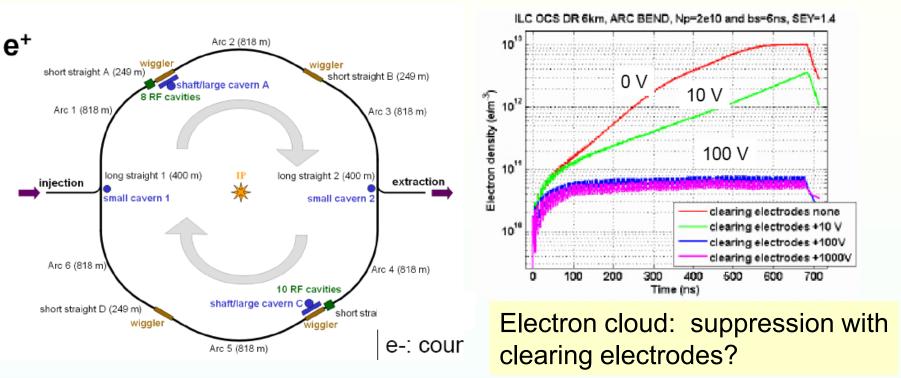
Luminosity

Trade-off between


- Luminosity
- beam energy precision (beamstrahlung δ)
- backgrounds (related to H_D)
- running cost


26

ILC energy spectrum



Need for:

- → Energy measurement accuracy 10⁻⁴
- → Stability and ease of operation
- Minimal impact on physics data taking

DR Challenges

Fast ion effects in electron DR:

feedback, vacuum design (1nTorr), train gaps?

- Long-range wake fields can drive multi-bunch instabilities,
- Short-range wake fields can drive single-bunch instabilities
- Requires: Fast kicker: 5ns rise time, 30 ns fall time...

(one train of 2625×369 ns $\rightarrow 290$ km !)

"The DR have more accelerator physics than the rest of the accelerator..." Ken Peach



Reliability

Linear Collider layouts

JAI.

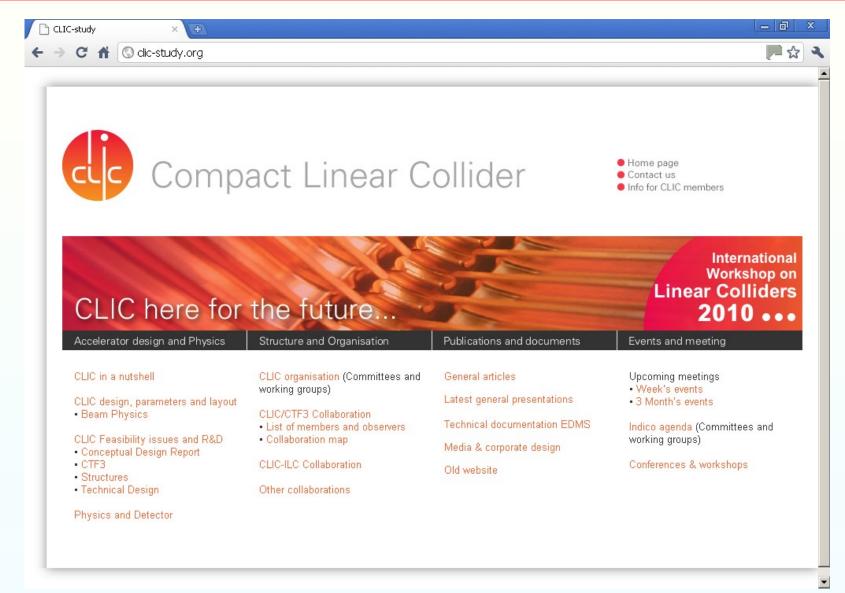
http://www.linearcollider.org/cms http://clic-study.web.cern.ch/CLIC-Study

Today: ILC & CLIC

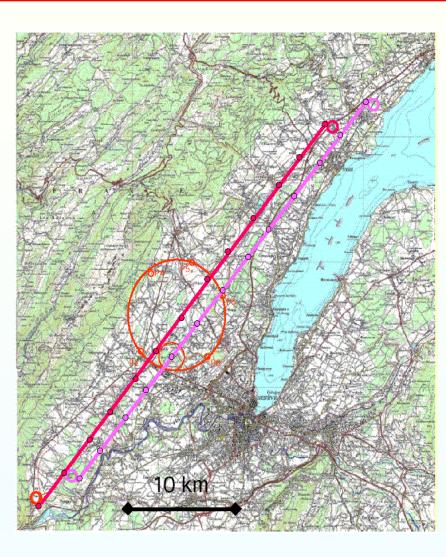
Based on SC RF Cavities Gradient: 32 MV/m Energy 500 GeV (upgradable to 1 TeV) Detector studies mostly 500 GeV

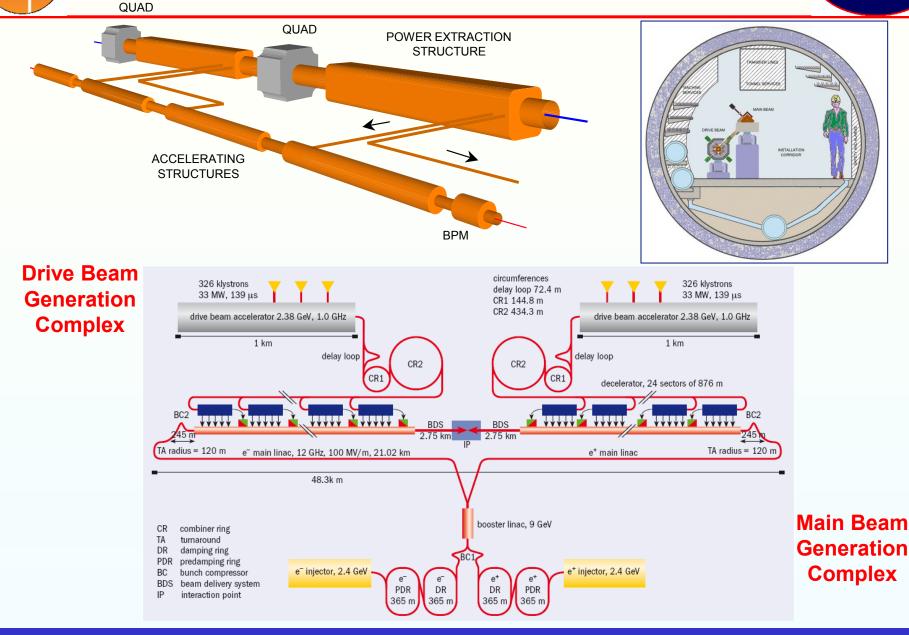
Based on 2 beam acceleration scheme Gradient: 100 MV/m Energy 3 TeV (staging likely) Detector studies mostly 3 TeV

Renewed impetus on CERN Compact Linear Collider: CLIC CDR due late Summer 2011: Accelerator + Detector/Physics could be the long term future of CERN but very challenging accelerator (R&D <u>at least</u> 5 years behind ILC) also very challenging detector environment


COMPACT LINEAR COLLIDER CLIC

What is it?




Building CLIC at CERN?

- 40 km continuous available
- Good geology
- Parallel to Jura & lake
 - also ILC?

J.A.I.

it won't be easy...

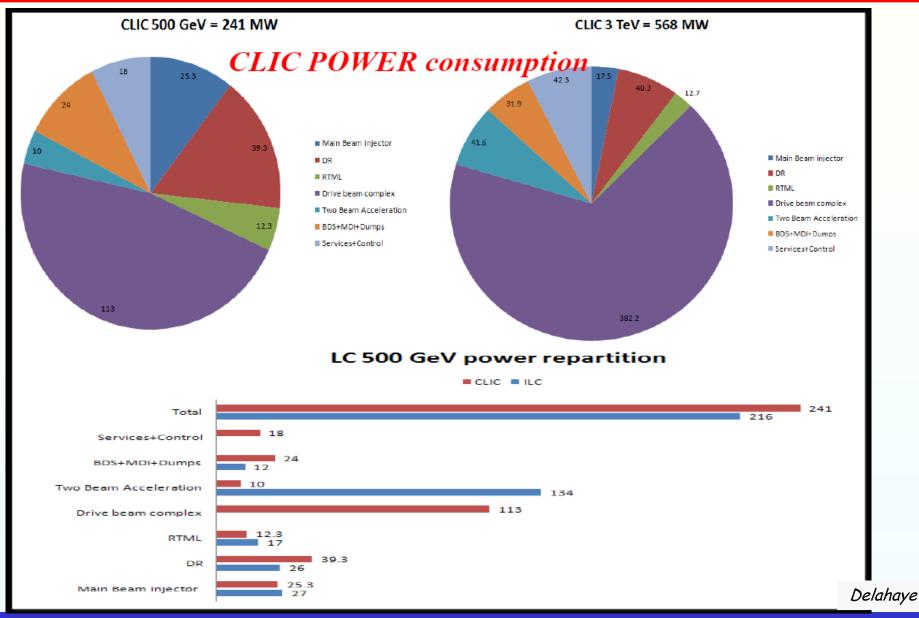
COMPACT LINEAR COLLIDER CLIC

Status

Main CLIC parameters

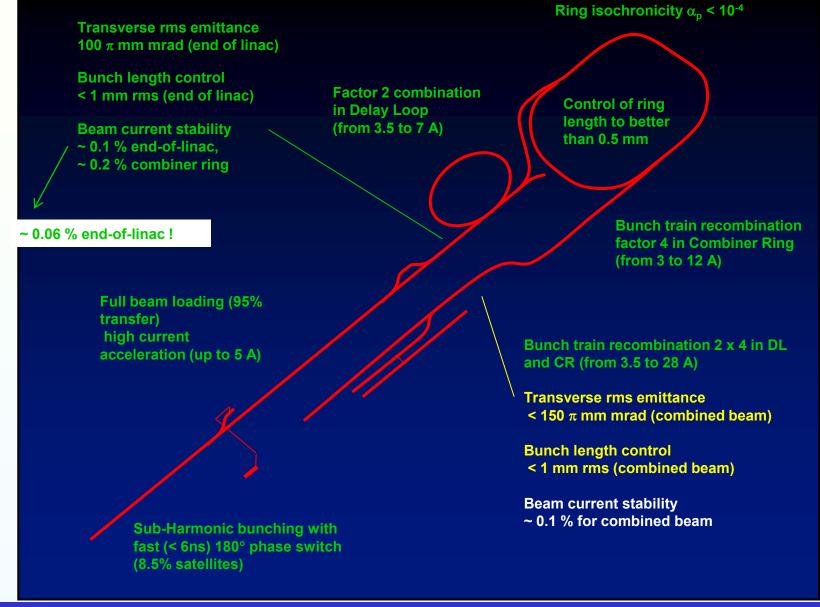
Centre-of-mass energy	CLIC 500 GeV		CLIC 3 TeV		
Beam parameters	Relaxed	Nominal	Relaxed	Nominal	
Accelerating structure	5	502		G	
Total (Peak 1%) luminosity	8.8(5.8)·10 ³³	2.3(1.4) ·10 ³⁴	7.3(3.5)·10 ³³	5.9(2.0) ·10 ³⁴	
Repetition rate (Hz)		50	0		
Loaded accel. gradient MV/m		80	1	100	
Main linac RF frequency GHz		12	2		
Bunch charge10 ⁹	6	.8	3.72		
Bunch separation (ns)	0.5				
Beam pulse duration (ns)	177		156		
Beam power/beam MWatts	4.9		14		
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	7.5/40	4.8/25	7.5/40	0.66/20	
Hor/Vert FF focusing (mm)	4/0.4	4 / 0.1	4/0.4	4 / 0.1	
Hor./vert. IP beam size (nm)	248 / 5.7	202 / 2.3	101/3.3	40 / 1	
Hadronic events/crossing at IP	0.07	0.19	0.28	2.7	
Coherent pairs at IP	10	100	2.5 107	3.8 10 ⁸	
BDS length (km)	1.87		2.75		
Total site length km	13.0		48.3		
Wall plug to beam transfert eff	7.5%		6.8%		
Total power consumption MW	129.4		415		

CLIC Feasibility status


Delahaye

System	Item	Feasibility Issue	Unit	Nominal	Achieved	How	Feasibilit
	Fully loaded accel effic	%	97	95	CTF3		
	Freq&Current multipl	-	2*3*4	2*4	CTF3	\checkmark	
	Drive beam	Combined beam current (12 GHz)	Α	4.5*24=100	3.5*8=28	CTF3	\checkmark
	generation	Combined pulse length (12 GHz)	ns	240	140	CTF3	~
		Intensity stability	1.E-03	0.75	< 0.6	CTF3	2011
			Deg (1GHZ)	0.05	0.035	CTF3, XFEL	\checkmark
		PETS RF Power	MW	130	>130	TBTS/SLAC	\checkmark
		PETS Pulse length	ns	170	>170	TBTS/SLAC	\checkmark
	Deserve Desirem	PETS Breakdown rate	/m	< 1.10-2	≤ 2.4 10-7	TBTS/SLAC	\sim
	Beam Driven RF power	PETS ON/OFF	-	@ 50Hz	-	CTF3/TBTS	2011
Two Beam Acceleration	generation	Drive beam to RF efficiency	%	90%	-	CTF3/TBL	2012
		RF pulse shape control	%	< 0.1%	-	CTF3/TBTS	2011-2012
	Accelerating	Structure Acc field	MV/m	100	100	CTF3 Test	\checkmark
	Structures	Structure Flat Top Pulse length	ns	170	170	Stand, SLAC, KEK	\sim
	(CAS)	Structure Breakdown rate	/m	< 3.10-7	5·10-5(D)		2011
		Rf to beam transfer efficiency	%	27	15		2011
	Two Beam	Power producton and probe beam acceleration in Two beam	MV/m - ns	100 - 170	106 - <130	TBTS	2011
	Acceleration	Drive to main beam timing	psec	0.05	-	CTF3	2012
		Main to main beam timing	psec	0.07	-	XFEL	2012
		Norm. Emitttance generation	H/V (nm)	500/5	3000/12	ATF, NSLS/SLS	
	Ultra low	Emittance preservation: Blow-up	H/V (nm)	160/15	160/15	+ simulation	2011-12
	Emittances &	Strong focusing: β*eff /L* from IP	mm/m	0.1/3.5	2.0/1.0	ATF2	2011-12
Ultra low	Ultra low Beam Sizes beam	Non-start based of the	1104 (1997)	/ (nm) 40/1	70	FFTB	2044.42
			H/V (nm)		300	ATF2+simul.	2011-12
	emittance & sizes Alignment	Main Linac components	μm	10	10 (princ.)	Align. & Mod.	2011
31203		Final-Doublet tolerance	μm	10	to (princ.)	Test Bench	2011
	Vertical	Quad Main Linac	nm>1 Hz	1.5	0.13	Stabilisation	2011-12
	stabilisation	Final Doublet (with feedbacks)	nm>4 Hz	0.2	(principle)	Test Bench	2011-12
Operation	and Machine	72MW@2.4GeV				CTF3	2044 42
Protection \$	System (MPS)	13MW@1.5TeV				simulations	2011-12
					39		

CLIC Power Consumption


Ken Peach

John Adams Institute 2ND ICPP in memoriam Engin Arik & colleagues

Drive Beam Generation

Ken Peach John Adams Institute 2ND ICPP in memoriam Engin Arik & colleagues

Corsini

CTF3 Achievements

8 PETS + spectrometer installed to verify transport of a 28 A beam with up to 30% of energy extracted.

Nominal probe beam to end of line (no accelerating structure)

Probe beam acceleration to 100 MV/m (55 MV/m measured)

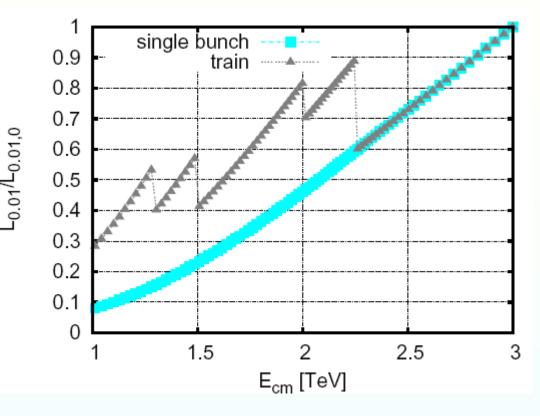
Beam-powered test of a PETS to nominal parameters (135 MW, 240 ns) with external recirculation (10 A) and without (20 A) – including probe beam Improved power & drive beam energy loss measurements (Break-down kick measurement).

Corsini

Beam-powered test of a PETS with external recirculation to 170 MW, <200 ns - ~10 A beam current Power & drive beam energy loss measurements.

The issue

- Small (10%) scans can always be done
 - Tune magnets, detune RF
- Optimise the machine for one energy
 - Running at much lower (or higher) energy
 - Compromised luminosity
 - Needs a machine reconfiguration
 - Cannot be done quickly (within a few hours)
 - » Can it be done at all?

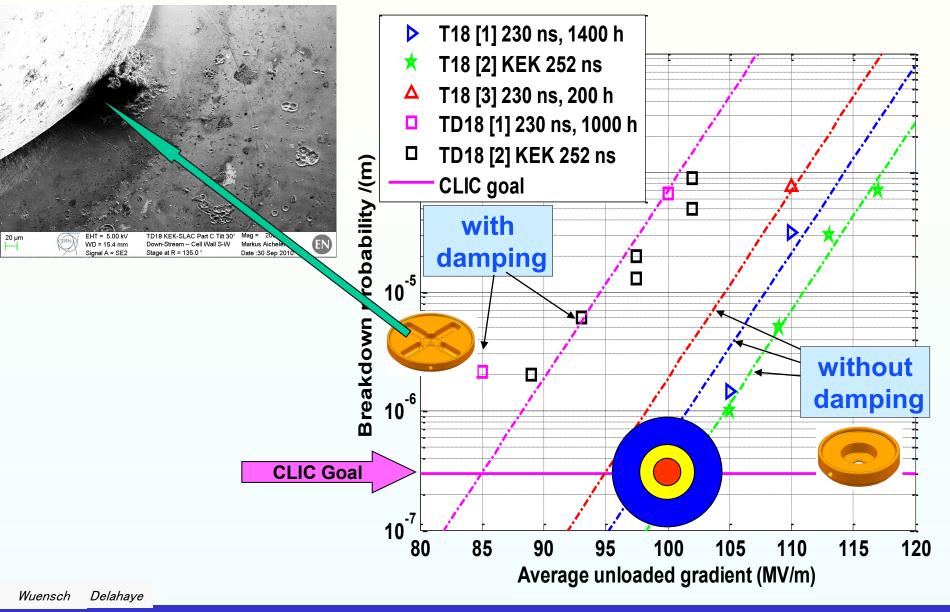


Progress-1: Energy scanning-2

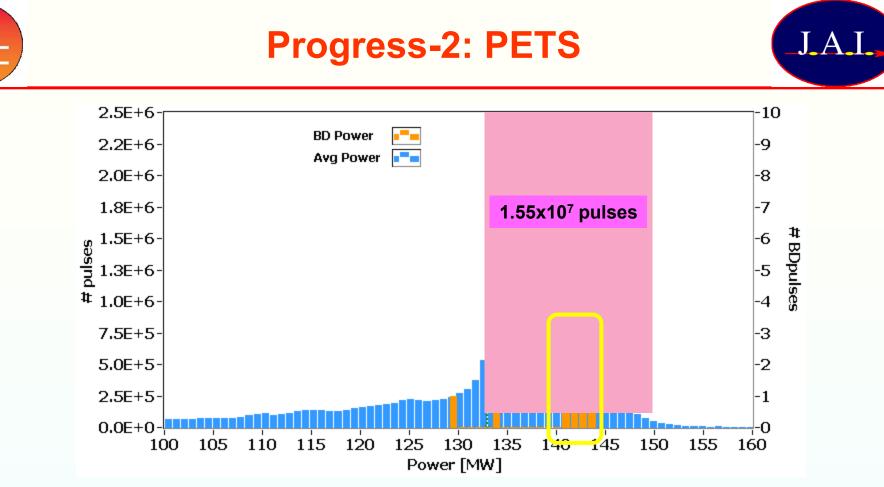
 Compensate partially for loss of (useful) luminosity from decreasing the RF gradient by increasing the pulse length

E/E_0	n_b	$n_{\mathcal{L}}$	$Q_p/Q_{p,0}$
1.0	312	1.0	1.0
0.75	472	1.5	1.12
0.667	552	1.77	1.18
0.5	792	2.54	1.27
0.375	1112	3.56	1.34
(0.333)	(1272)	(4.08)	(1.36)
E maximum centre-of-mass			

energy for operation mode



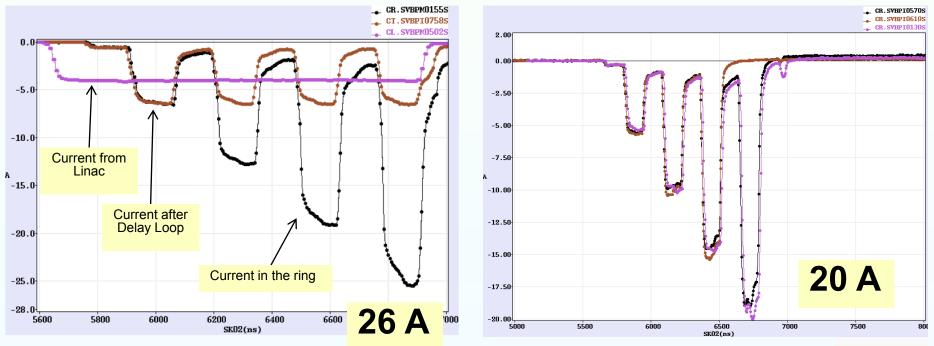
Schulte


JAI

Progress-2: Accelerating Structures

JAL

- 8 PETS breakdown events in 1.55 ×10⁷ pulses (125 hours)
 - Breakdown rate 5.3 ×10⁻⁷/pulse [CLIC Goal <2 ×10⁻⁷/pulse]
 - (excluding the 8 in the cluster 1.3 ×10⁻⁷/pulse)
 - In 80 hours no breakdowns were registered
 - BDR <1.2x10⁻⁷/pulse



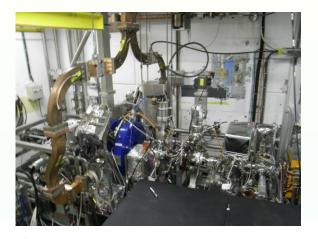
4 x combination

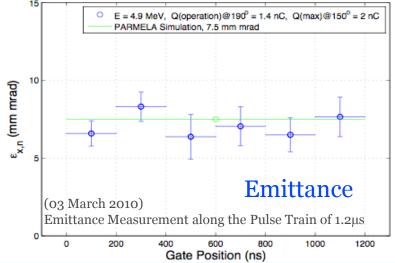
- Lower current $\leftarrow \rightarrow$ Missing klystron
- But back in operation continue work

2009

2010

47

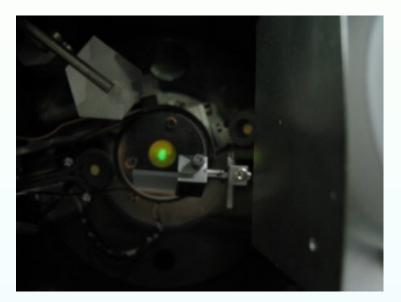


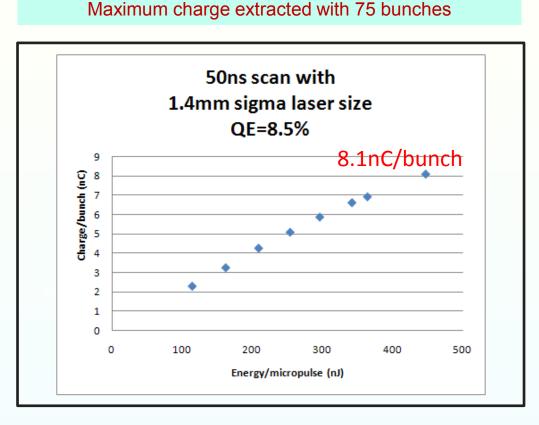


specifications successfully demonstrated during the June run

PHIN

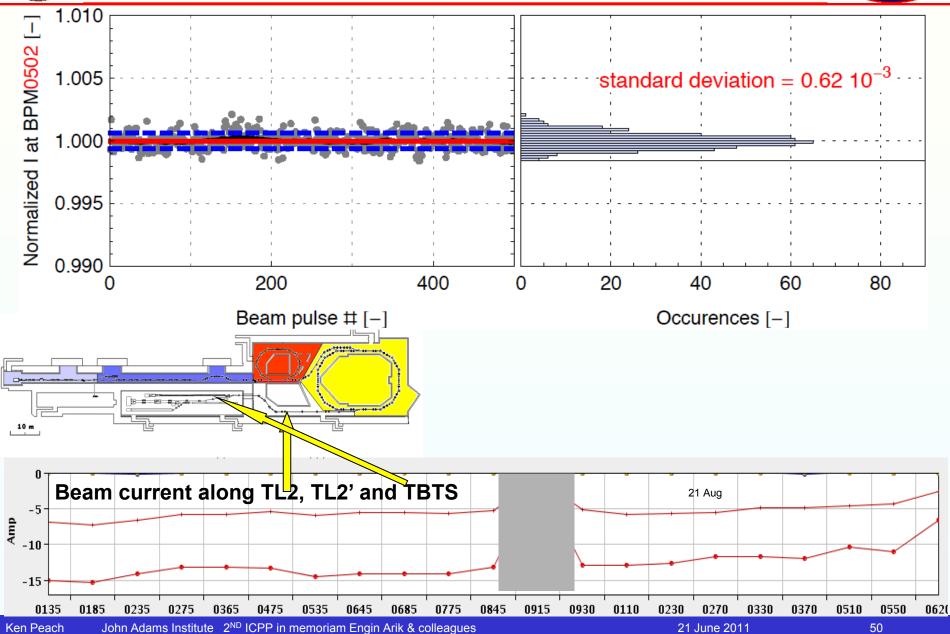
measurements along pulse train


Parameter	Specification	Achieved	
Charge per Bunch (nC)	2.33	4.4 🗸	
Charge per Train (nC)	4446	>4446 🗸	
Train Length (ns)	1273	1300 🗸	
Current (A)	3.5	~3.4 🗸	
Normalized Emittance (mm mrad)	<25	14 🗸	
Energy Spread (%)	<1	0.7 🗸	
Energy (MeV)	5.5	5.5 🗸	
UV Laser Pulse Energy (nJ)	370	400 🗸	
Charge Stability (%)	<0.25 rms 🗧	1-2 🗶	
Cathode	Cs_2Te	Cs_2Te 🗸	
Quantum Efficiency (%)	3	18 (peak) 🗸	
RF Gradient (MV/m)	85	85 🗸	
RF Frequency (GHz)	2.99855	2.99855 🗸	
Micropulse Repetition Rate (GHz)	1.5	1.5 🗸	
Macropulse Repetition Rate (Hz)	1-5	1-5 🗸	
		Tecker	


Ken Peach

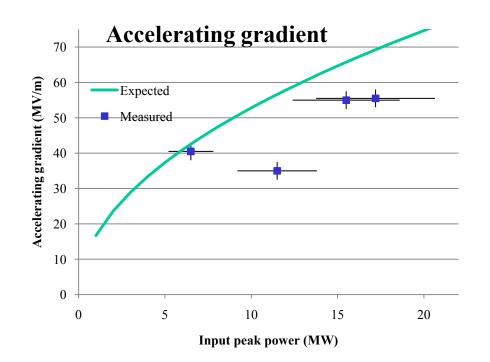
<u>Marta Csatari</u>

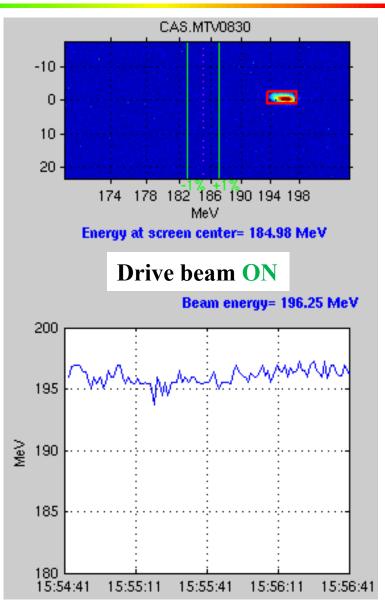
- New green responsive cathode tested in UV Cs3Sb
- Cathode lifetime measurements


HIGHEST charge extracted from PHIN to date

 $\mathbf{J} \mathbf{A}$

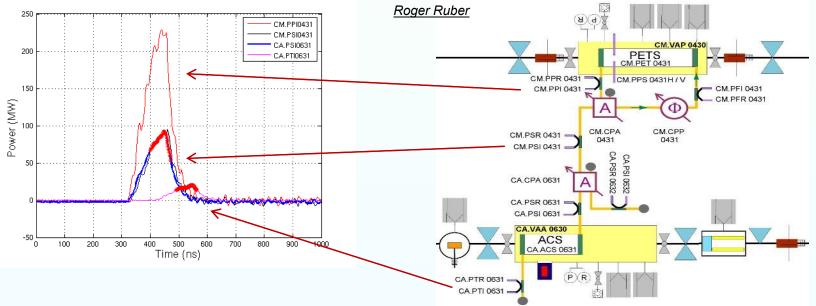
Beam Stability


JAI



- maximum probe beam acceleration of 11 MeV measured
- => gradient ~55 MV/m
- RF calibrations to be verified

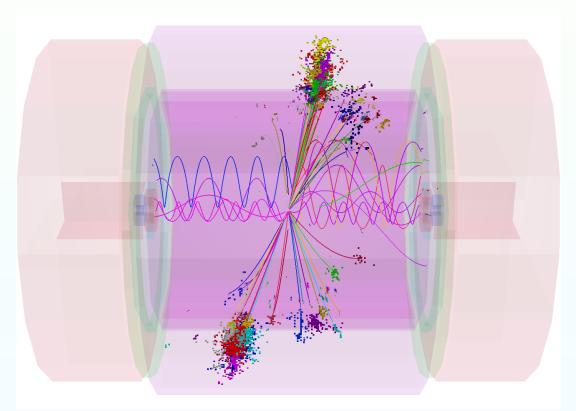
Frank Tecker


CTF3 results

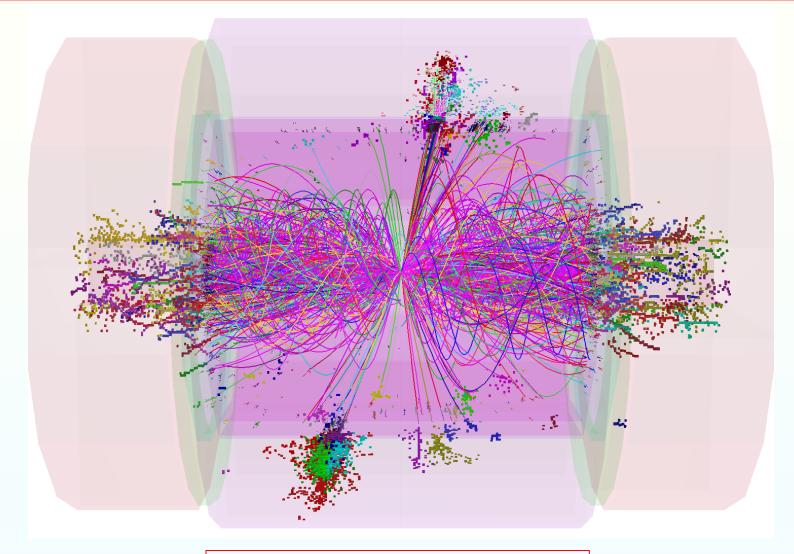
RF Power Production - PETS

- >200 MW peak RF power
 - ~ 3x10⁵ pulses (rapid)
 - Record level
- reliable pulses
 - ~100 MW in accelerating structure
 - ~ twice power neded for 100 MV/m
 - two beam experiment
 - TD24_vg1.8_disk structure.

J.A.I.

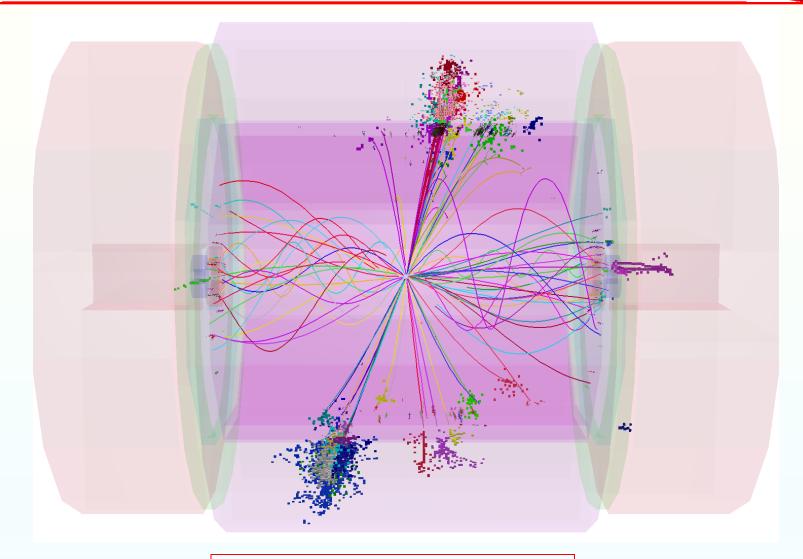


Detectors



- Modified ILC detector concepts
 - Vertex detector further out (r_{min} = 30 mm)
 - Thicker HCAL (8 λ_l)
 - HCAL inside solenoid need to keep "thin" (Tungsten?)
 Full Geant4 simulations of ILD and SiD for CLIC

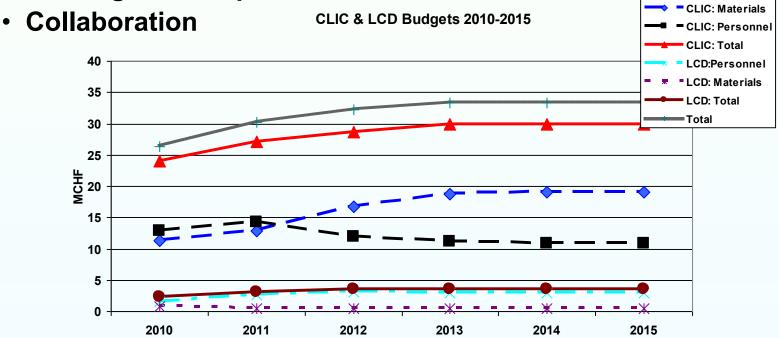
Reconstructed CLIC event with "pile-up" JAL



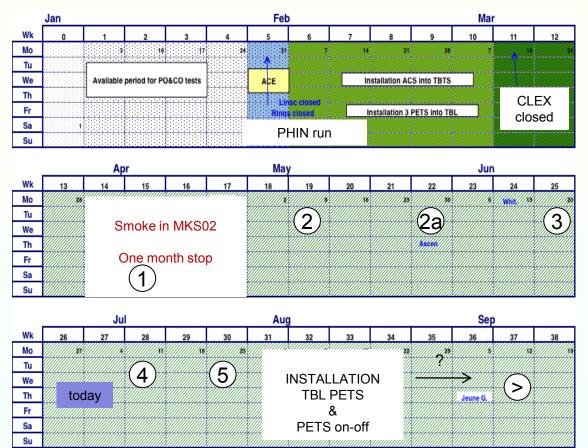
1.4 TeV of background !

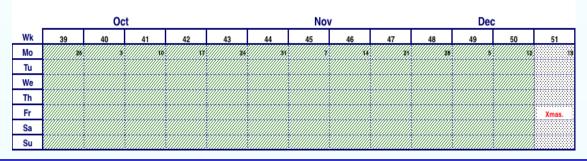
After timing cuts at cluster level

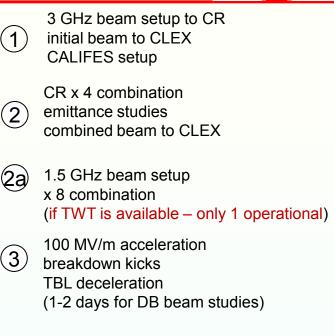
0.1 TeV of background



NEXT STEPS


- Increase in resources for CLIC
 - Materials 11.9→19.0MCHF
 - Personnel 12.8→10.9MCHF
 - Overall increase ~60%
 - but
 - Shortage of manpower





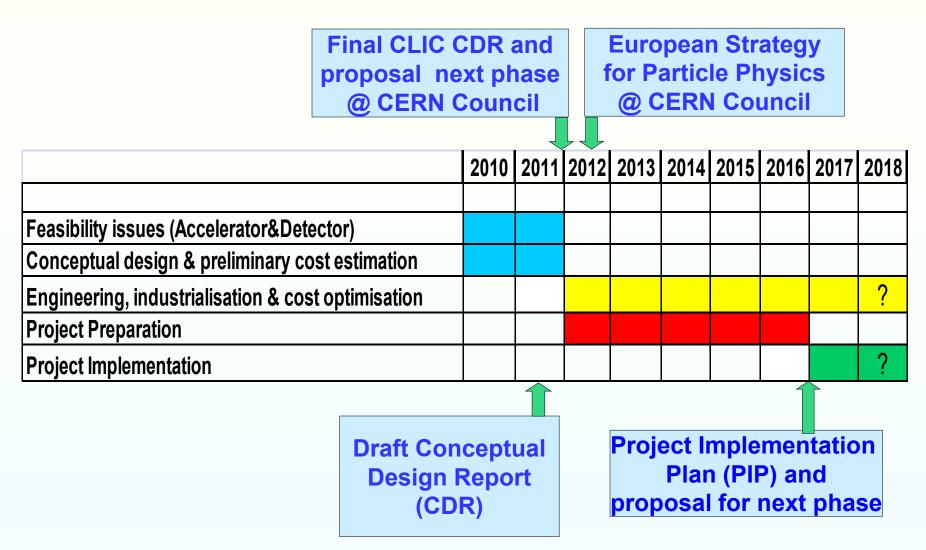
Planning 2011

 ε < 150 mm mrad
 longitudinal studies stability x 8 combination (night running for BDR)

5 breakdown rate measurements PETS / ACS

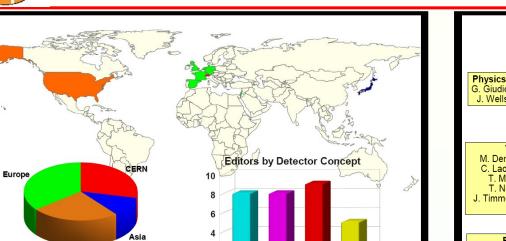
- Test of new PETS on-off scheme TBL deceleration up to 8 PETS

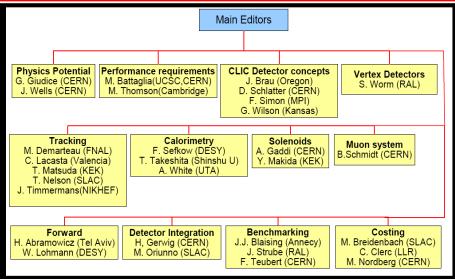
Beam phase	CSR
rep. rate / losses	night
supervision	


CLIC Feasibility status

Delahaye

System	Item	Feasibility Issue	Unit	Nominal	Achieved	How	Feasibilit
	Fully loaded accel effic	%	97	95	CTF3	\checkmark	
		Freq&Current multipl	-	2*3*4	2*4	CTF3	\checkmark
	Drive beam	Combined beam current (12 GHz)	Α	4.5*24=100	3.5*8=28	CTF3	\checkmark
	generation	Combined pulse length (12 GHz)	ns	240	140	CTF3	~
		Intensity stability	1.E-03	0.75	< 0.6	CTF3	2011
		Drive beam linac RF phase	Deg (1GHZ)	0.05	0.035	CTF3, XFEL	\checkmark
		PETS RF Power	MW	130	>130	TBTS/SLAC	
		PETS Pulse length	ns	170	>170	TBTS/SLAC	\sim
		PETS Breakdown rate 🤳	/m	< 1.10-7	≤ 2.4 10-7	TBTS/SLAC	~
	Beam Driven	PETS ON/OFF	-	@ 50Hz	-	CTF3/TBTS	2011
Two Beam Acceleration	RF power generation	Drive beam to RF efficiency	%	90%	-	CTF3/TBL	2012
		RF pulse shape control	%	< 0.1%	-	CTF3/TBTS	2011-2012
	Assolution	Structure Acc field	MV/m	100	100	CTF3 Test	
	Accelerating Structures	Structure Flat Top Pulse length ≽	ns	170	170	Stand, SLAC,	\sim
	(CAS)	Structure Breakdown rate	/m	< 3.10-7	5·10-5(D)	KEK	2011
	(CA3)	Rf to beam transfer efficiency	%	27	15	NLN	2011
	Two Beam	Power producton and probe beam acceleration in Two beam	MV/m - ns	100 - 170	106 - <130	TBTS	2011
	Acceleration	Drive to main beam timing	psec	0.05	-	CTF3	2012
		Main to main beam timing	psec	0.07	-	XFEL	2012
		Norm. Emitttance generation	H/V (nm)	500/5	3000/12	ATF, NSLS/SLS	
	Ultra low	Emittance preservation: Blow-up	H/V (nm)	160/15	160/15	+ simulation	2011-12
	Emittances &	Strong focusing: B*eff /L* from IP	mm/m	0.1/3.5	2.0/1.0	ATF2	2011-12
Ultra low	Beam Sizes			H/V (nm) 40/1	70	FFTB	
beam			H/V (nm)		300	ATF2+simul.	2011-12
emittance &	ittance & sizes Alignment	Main Linac components	μm	10	40 (mains)	Align. & Mod.	2044
sizes		Final-Doublet tolerance	μm	10	10 (princ.)	Test Bench	2011
	Vertical	Quad Main Linac	nm>1 Hz	1.5	0.13	Stabilisation	2044 42
	stabilisation	Final Doublet (with feedbacks)	nm>4 Hz	0.2	(principle)	Test Bench	2011-12
Operation	and Machine	72MW@2.4GeV				CTF3	
•	System (MPS)	13MW@1.5TeV				simulations	2011-12
en Peach John Adams Institute 2 ND ICPP in memoriam Engin Arik & colleagues 21 June 2011 61							

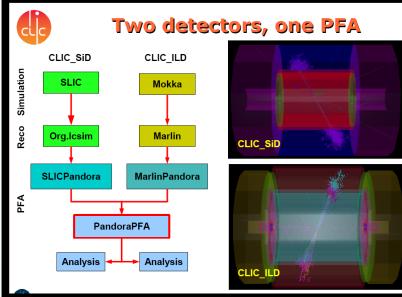




After Delsahaye

CLIC CDR: P&D Editorial Team

	CLIC_SID	CLIC_ILD
Vertex detector	inner radius 2.7 cm 5 single barrel layers 6 single layer forward disks	inner radius 3.1 cm 3 double layers 3 double layer pixel forward disks
Tracker	Si, unchanged	TPC, unchanged
ECAL	unchanged	unchanged
HCAL Barrel	W+Scintillator, 3x3 cm tiles 7.5 ∧ _i 1 cm plates W+RPC, 1x1 cm tiles 7.5 ∧ _i 1 cm plates	W+Scintillator, 3x3 cm tiles 7.5 ∧ _i 1 cm plates
HCAL Endcap	Fe+Scintillator, 3x3 cm tiles 7.5 ∧ _i 2 cm plates Fe+RPC, 1x1 cm tiles, 7.5 ∧ _i 2 cm plates	Fe+Scintillator, 3x3 cm 7.5 A _i 2 cm plates
Coil	5T, Radius=2.68 m	4T, Radius=3.35 m

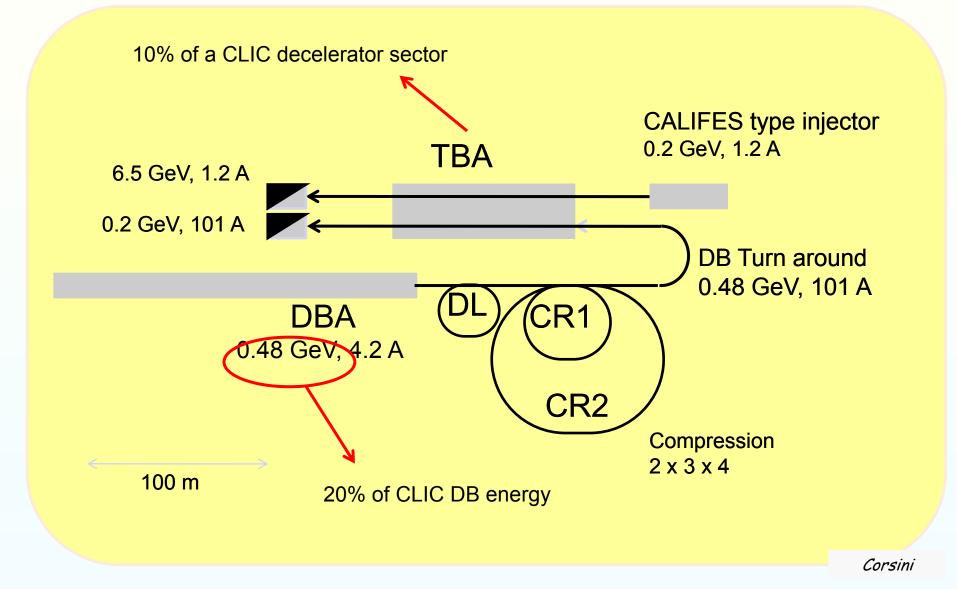

2

0

SiD

ILD

CLIC neutral



Stanitski

Americas

JAI

J.A.I

2010

CLIC-ILC WG on General Issues

STATEMENT OF COMMON INTENT

by the CLIC Collaboration Board and the ILC Steering Committee

Recognising the need for an electron-positron linear collider to explore the physics that will be revealed by the LHC,

Considering the synergies that exist and the opportunities for collaboration that arise between the ILC Global Design Effort and the CLIC collaboration, as well as between the ILC and CLIC physics and detector studies, and

Building upon the CLIC/ILC joint statements,1

The two parties **agree** to promote and develop scientific and technical preparations for a linear collider, and to exploit wherever possible synergies between ILC and CLIC, including accelerator, detector and physics topics, so the designs are prepared efficiently in the best interest of high-energy physics.

The ILC Steering Committee and the CLIC Collaboration Board will foster this cooperation by agreeing, reviewing and updating a list of topics of common interest. This includes, but is not limited to, the topics listed in the Addendum to this agreement, which already form the subjects of joint ILC-CLIC Working Groups.

Signed

Date January 11th 2010

Date January 11th 2010

(Jonathan Bagger)

(Ken Peach)

on behalf of the ILC Steering Committee on behalf of the CLIC Collaboration Board

- Membership:
 - CLIC: Ph. Lebrun (co-chair), K. Peach, D. Schulte
 - ILC: E. Elsen, M. Harrison (co-chair), K. Yokoya
- Mandate
 - Promoting the Linear Collider
 - Identifying synergies
 - Discussing detailed plans for the ILC and CLIC effort & project planning.
 - Discussing issues that will be part of each project implementation plan
 - Identifying points of comparison between the two approaches
- Reporting line
 - Creported to the ILCSC and CLIC Collaboration Board
 - Amin to produce a joint document.
- Working method
 - Approximately monthly meetings by teleconference
 - Four face-to-face meetings

NOT OFFICIALLY APPROVED IYING SUST KNOWN

SCALE KHOWH

Current technical working groups are

- Beam delivery system & machine-detector interface
- Civil engineering and conventional facilities
- Positron generation
- Damping rings
- Beam dynamics
- Cost & schedule
 - Opportunities for further work
 - Conventional RF?
 - Surface science?
 - ...

- $2\frac{1}{2}$ key facts are needed
 - 1. Is there a light (<200 GeV/c²) Higgs?
 - 2. Is there New Physics (below 1 TeV)?
 - $\frac{1}{2}$ If yes, what is the energy range?
- Note:
 - It does not matter much from the point of view of defining the decision point what the answers to these questions are – only that we know them!
 - The 1st question may be answered by end 2012
 - The 2nd question may be answered by end 2011
 - The ¹⁄₂ question may not be clear for some time
 - We need to define criteria for making a "fact"
 - Is 3σ enough for evidence?
 - Is 98% enough to exclude?
- Reach of LC wrt HE-LHC or HL-LHC?

- Do we need the answers to both to proceed?
 (KJP) yes (politically)
- Is the European Strategy update a constraint?
 - (KJP) yes
 - If either is question are answered before Strategy workshop
 - Encourage the Americas & Asia to update their strategies
 - Organise input to these discussions
 - If there is no reliable information by March 2012
 - Be prepared to organise a quick workshop between March and the Strategy update workshop if evidence emerges
 - Plan for a "community workshop" in 2013 to review the situation
 - [this will either define the LC parameters or address the crisis]

- Excellent technical progress to the CDR
 - Delayed ~6 months by the fire
 - Address remaining feasibility issues
 - On track for CDR by end 2011
- Plans developed for the post-CDR phase
 Disrupted by the financial crisis
 - But a revised plan emerging

Opportunities for greater collaboration

- Prepare for the post 2012 landscape
 - New connections ILC ← → CLIC?
 - New organisational structures?

Wait for "good news" from the LHC

Thank you