

Introduction Performance in 2010 Progress in 2011 Looking ahead Conclusions

CERN's injector complex

LHC layout and accelerator systems

Luminosity - reminder

 $\frac{N^2 k_b f}{4\pi\sigma_x \sigma_y} F = \frac{N^2 k_b f \gamma}{4\pi\varepsilon_n \beta^*} F \qquad \sigma^* = \sqrt{\varepsilon\beta^*}$

Ν	Number of particles per bunch
K _b	Number of bunches
f	Revolution frequency
σ_{y}	Beam size at interaction point
F	Reduction factor due to crossing angle
${\mathcal E}$	Emittance – area in phase space occupied by beam
\mathcal{E}_n	Energy normalized emittance
$oldsymbol{eta}^*$	Beta function at IP – defines beam envelope

2010 – main aims

- Lay the foundations for 2011 and the delivery of 1 fb⁻¹. Peak luminosity target 1x10³² cm⁻²s⁻¹
- Gain solid operational experience of injecting, ramping, squeezing and establishing stable beams
- Steady running at or around 1 MJ for an extended period
- Perform a safe, phased increase in intensity up to around 30 MJ per beam

30 MJ is equivalent to ~7 kg of TNT

2010 parameters

	2010	Nominal
Energy [TeV]	3.5	7
beta* [m]	3.5, 3.5, 3.5, 3.5 m	0.55, 10, 0.55, 10
Emittance [mm.mrad]	2.0 – 3.5 start of fill	3.75
Transverse beam size at IP [microns]	~60	16.7
Bunch intensity	1.2e11	1.15e11
Number of bunches	368 348 collisions/IP	2808
Stored energy [MJ]	28	360
Peak luminosity [cm ⁻² s ⁻¹]	2e32	1e34

Luminosity: 3 running periods

CMS

Status LHC Stored Energy

LHC status

- Excellent single beam before collisions over 300 hours
- Luminosity lifetime 15- 20 hours, better in 2011
 Reasonably well given by emittance growth and intensity decay
 Minimal drifts in overlap beams very stable
- Intensity lifetime ~90 hours
 Luminosity burn, losses on collimators
- Emittance growth (hor. ~ 30 hours, vert. ~ 20 to 40 hours)
 Intra Beam Scattering
 and something else at least sometimes "the hump"

Optics & magnetic machine

Optics stunningly stable

- Machine magnetically and optically well understood
 - Excellent agreement with model and machine
- Magnetically reproducible
 - □ Important because set-up remains valid from fill to fill

Making sure the hierarchy is respected

(beam1, vertical beam loss, intermediate settings)

Beam Loss [Gy/s]

Excellent single beam lifetime

- Ramp & squeeze essentially without loss
 - □ No quenches with beam above 450 GeV
 - Excellent performance of Machine Protection
- Optics close to model (and correctable)
- Excellent reproducibility
- Aperture as expected
- Better than nominal from injectors
 - Emittances, bunch intensity

Beam-beam: can collide nominal bunch currents

□ With smaller that nominal emittances – surprise!

And surprisingly good availability...

Overall LHC efficiency in 2010

Very fast commissioning plan worked:

- □ Collisions within 50 hours of first injection
- Profited of the experience of the proton run
- □ Stable beams within 4 days (... and physics)
- Rapid progression in number of bunches

The LHC worked with Pb beams

- No rapidly decaying, invisible beams
- □ No quenches
- Some new losses and radiation problems

Pb run 2010 - Achievements

Integrated Luminosity	10 μb ⁻¹
Peak Stable Luminosity Delivered	3.04x10 ²⁵ cm ⁻² s ⁻¹
Maximum number of bunches in collision	137
Average bunch population	1.2x10 ⁸ ions (>60% above nominal)

2010/12/06 21.36

Pb run 2010: Collimation

PROBLEMS – TWO OF THEM

UFOs – unidentified falling objects

- Many sudden local losses have been recorded.
- No quench, but preventive dumps
- Rise time around of the order 1 ms.
- Potential explanation: dust particles falling into beam creating scatter losses and showers propagating downstream
- Distributed around the ring arcs, inner triplets, IRs

Reflection

Schematic of electron cloud build up in LHC arc beam pipe due to photoemission and secondary emission [F. Ruggiero]

Secondary emission yield [SEY]

- Vacuum pressure rise (background in experiments)
- Single-bunch instability
- Multi-bunch instability
- Incoherent emittance growth
- Heat load in cold arcs (quenches in the limit)

Experience in 2010

- Vacuum activity started off in regions with common beam pipe at 450 GeV as we pushed up the number of bunches with 150 ns spacing
 - Test solenoids cured problem electron cloud

Tried 50 ns bunch spacing

- Things really kicked off
- High vacuum activity in warm regions
- □ Significant heat load in cold regions
- Instabilities and beam size growth observed
- Surface conditioning ('scrubbing') observed
 - Gas desorption rates and SEY drop
 - Time constant < 1 day</p>
- Situation a lot cleaner with 75 ns
 - incoherent effects seen emittance blow-up
 - □ 800+ bunches injected into both beams

Scrubbing strategy for 2011

- 2010 observations are certainly due to ~ 2 < SEY < 2.5, whereas 1.7 was usually the max value studied in the past
- Scrubbing with large emittance, high intensity 50 ns beam
- Time around 10 days including preparation and validation
- Lots of wire wrapped around warm bits during the technical stop (solenoids)

Solenoids between DFBX and D1 in IR1R

常二篇

and a

.M. Jimenez

TE-VSC Group

Motivation is clear!

fast, secure and far-reaching

- 1 fb⁻¹ delivered to each of IP1, IP5 and IP8 at 3.5 TeV
- Challenge to deliver 1 fb⁻¹ to IP8
 - □ Maximum luminosity : from 2e32 to 3e32 cm⁻² s⁻¹
 - □ Luminosity leveling via separation required to get close

Alice

□ pp run: 5e29 < L < 5e30 cm⁻² s⁻¹, $\mu < 0.05$

Decided on beta* = 1.5 m in Atlas, CMS; 3 m in LHCb; 10 m in Alice

Baseline scenario for 2011

Beam commissioning: 3 weeks

Exit - stable beams with low number of bunches

- Ramp-up to ~200 bunches (75 ns): 2 weeks
 - Multi-bunch injection commissioning continued
 - □ Stable beams
- Technical Stop: 4+1 days
- Scrubbing run: 10 days including 50 ns injection comm.
- Intermediate energy run 5 days
- Resume 75 ns operation and increase no. bunches: 3 weeks

 $\hfill\square$ 300 – 400 – 600 – 800 – 930 - MPS and OP qualification

- Physics operation 75 ns: ~930 bunches
- 50 ns remains an option if things look good

2011 LHC schedule Q1/Q2

19 th February	First beam, circulating beams established.
3 rd March	First collisions at 3.5 TeV, beta*=1.5 m with pilot beams
5 th March	Nominal bunches at 3.5 TeV, start collimator set-up, injection and beam dump set-up & validation
13 th March	First stable beams, 3 bunches per beam, initial luminosity 1.6e30 cm-2s-1
18 th March	32 bunches per beam, initial luminosity ~3e31 cm ⁻² s ⁻¹
19 th March	64 bunches per beam, initial luminosity ~6e31 cm ⁻² s ⁻¹
20 th March	1.45e32 cm ⁻² s ⁻¹ with 75 ns

Fast re-commissioning, improvements across the board.

Operation cycle now well optimized: faster ramp & squeeze, much fewer manual actions required by shift crews

Machine still beautiful

- Beta beating corrected down to 5-10%!!
- Confirmed stability of the optics
- 'Final' β^* values from K-modulation:

Beam/plane	IR5	IR1
B1H	1.50	1.53
B2H	1.48	1.57
B1V	1.52	1.50
B2V	1.52	1.57

- Errors around 4-10%
- Aperture: global > 12 σ , triplet > 14.5 σ

Scrubbing run

- Impressive progression in spite of several technical problems not related to the scrubbing (> 3 days lost).
- 5 days of scrubbing
- All solenoid off (experiments and vacuum solenoids at warm sections)

Date	Bunches B1+B2
Tue 5 th April	300+300
Wed 6 th April	408+336
Sat 8 th April	588+588
Sun 9 th April	804+804
Mon 10 th April	1020+1020

- Careful increase in intensity (in steps of 200 bunches) monitoring cryogenics, vacuum, machine protection and particularly RF
 - Limited to 72 bunches/train by injection performance
- Reached 1020 bunches per beam at the end of the scrubbing run → more than 10¹⁴ protons per ring

Scrubbing: effect on beam

Started like this – 300 bunches

804 bunches some hours of scrubbing

Scrubbing: Heat-loads in the arcs

 Impressive reduction of the heat load in few hours: results consistent with SEY reduction from 2.5 to <1.8

L. Tavian

Decision taken to go with 50 ns bunch spacing after encouraging scrubbing run

Next step – increasing the number of bunches

Issues include:

- Running with higher total beam intensity requires much finer control of the beam parameters plus...
- More UFOs
- More SEUs
- RF Power Couplers (present limitation)
- RF wave-guide flashover (linked to UFOs)
- HOM heating of Injection kickers, cryo, collimators.. (total intensity and bunch length dependence)

UFO's: coming thick and fast

_ile LHC Control Favorites HWC General Observation Print..

Print... WorkingSet

Screenshot <u>A</u>ctive Tasks

Context 1: PLS_LINE=LHC.USER.LHC 1

cquisition	Found UFOs								
	UFO BLM	Losses RS05[Gv/s1].		Losses RS01 [Gv/s]	Losses RS04 [Gv/s]	L L	L.	. L	LL.
		1.025 4							
	BLMQL2SL8.BIEI0_MQ	1.03E-4 .		. 9.05E-4					···· ···
	BLMQLISKS.BIIIO_MQ	3.20E-0 .		. <u>3.62E-4</u> .					<u> </u>
Concentrator Acquisition 👻	BLMQL27L8.B2HO_MQ	0.41E-4 .		. 2.53E-3			··· ···		<u> </u>
	BLMQI, I3K2, B2EIU_MQ	3.82E-4 .		. 2.44E-3		<u> </u>	··· ···		<u> </u>
Settings	BLMQI.18LS.B1I10_MQ	7.49E-5 .		. 9.05E-4 .		<u></u>			<u> </u>
	BLMQI.26L1.B2E30_MQ	1.73E-4 .		. 1.18E-3		<u></u>	<u> </u>		<u></u>
	BLMEI.05R8.B2E20_MKI.D5R8.B2	8.56E-4 .		. 3.08E-3	2.13E-3	<u></u>			··· ··
	BLMQI.19R3.B1I10_MQ	1.48E-4 .		. <u>3.17E-3</u> .		<u> </u>			<u></u>
	BLMQI.07L2.B1E10_MQM	2.12E-4 .		. 6.34E-4 .	3.73E-4				
	BLMQI.18L6.B2I10_MQ	2.18E-4 .		. 1.36E-3 .	6.56E-4				
	BLMQI.19R3.B1I10_MQ	2.77E-4 .		. 1.27E-3 .	6.56E-4				
	BLMQI.07L1.B1I10_MQM	6.93E-5		. 1.09E-3	2.72E-4				
La su statu su	BLMQI.29L6.B1E10_MQ	5.15E-4 .		. 7.51E-3 .	1.97E-3				
Igorithm	BLMQI.16L3.B2E10_MQ	6.66E-4 .		. 4.07E-3	1.86E-3				
Ontimized Algorithm -	BLMOI. 10R5. B2I10_MOML	4.94E-4		. 4.52E-3					
opuninzeu Algoriunin	BLMOL10R8.B1I10 MOML	7.85E-4	2011-04-13 14:22:	3.98E-3					
ettinas	BLMOL28R2 B1110 MO	9.33E-5	2011-04-13 14:23:	5.43E-4	3.05E-4				
	BLMOL25R8 B2E10 MO	4 41F-4	2011-04-13 14:25	3 08F-3	1 51E-3				
Threshold for BLMs 1.0E-4	BLMQL26L3 B1110 M0	8 91E-5	2011-04-13 14:26:	5 43E-4	2 94F-4				
	BLMOL 19R2 B2E10 MO	2.83F_4	2011-04-13 14:27	1 09E-3	6.22E_4	+			···· ···
	PLMQL 19(2:82C10_MQ	7.595_4	2011-04-12 14:20:	2 5 2 5 - 2	1.67E-2				
		0.055.5	2011-04-13 14:20:	. 3.33E-3 .	2 005 4	++-			···· ···
Use running sum: 4	BLMQI.26LI.BIIIO_MQ	9.05E-5 .		. 0.34E-4 .					···· ···
	BLMELUSR8.B2E20_MINLDSR8.B2	9.05E-5 .		. 1.185-3					··· ···
	BFWŐI'S IKS'BTITO-WŐ	5.24E-3 .		. 1.23E-2 .		<u></u>	<u></u>		<u></u>
Threshold for ratio of RS2/1 0.55	BLMQI.19R3.B1I10_MQ	2.25E-4 .		. 1.90E-3		<u></u>			
	BLMQI.14R2.B1I10_MQ	8.06E-4 .		. 8.78E-3		<u></u>	<u> </u>		<u></u>
	BLMQI.14L4.B2E30_MQ	5.37E-5 .		. 3.62E-4 .	1.30E-4	<u></u>			
	BLMQI.14R7.B1E10_MQ	5.12E-4 .		. 3.26E-3	1.41E-3				
Threshold for ratio of RS3/2 0.45	BLMQI.25R8.B2E10_MQ	1.60E-4 .		. 1.18E-3 .	4.92E-4				
·	BLMQI.25R8.B2E10_MQ	1.75E-4 .		. 9.96E-4 .	5.32E-4				
	BLMQI.12L4.B2E10_MQ	6.55E-4 .		. 2.26E-3 .	1.24E-3				
	BLMQI.28R7.B2I10_MQ	4.51E-4 .		. 2.99E-3	1.43E-3				
Inreshold for ratio of RS4/3 0.55	BLMQI.08L3.B1I10_MQ	1.13E-3 .		. 1.72E-2 .					
	BLMOL25R7.B1E10 MO	1.20E-4		1.18E-3					
	BLMOL31R5 B2I10 MO	2 67F-4	2011-04-13 14.47	1 90F-3	9 16E-4				
	BLMOL 1888 B1110 MO	3 96F-4	2011-04-13 14:48	3 17F-3	1 44F-3				
Get Set	BIMOL24R8 B2E10_MQ	3 01E-4	2011-04-13 14:50	2 26F-3	1.05E-3	++-			<u> </u>
	BIMOL2116 B2110 MO	2.53E_4	2011-04-13 14:51	2 77F_3	0 70F_4	++-			···· ···
ction	PLMOL 14R2 P1110_MQ	5 195-4	2011-04-12 14:51	6.06E-2	2 02E_2	++-			···· ···
	DEMQI 14K2.DIIIO_MQ	D.19E-4		. 0.00E=5 .		_ <u></u>		<u> </u>	<u> </u>
autosave 📃		Remove	Remove all Sho	w data save	heal				

~90 in 90 minutes - happily most below threshold

UFO around injection region

679 UFOs around the injection kickers caused 9 beam dumps.

Most of the UFOs around the kickers occur before going to stable beams.

Radiation to electronics (SEUs etc.)

Cryogenics controls implicated (among others)

Increasing intensity – machine protection

- Collimation loss of hierarchy at 450 GeV
 Orbit. Regular loss maps performed
- 72 (108/144) bunches from SPS
 - □ Beam quality from injector very important
 - \Box 144 bunches per injection from SPS > 1 MJ down the lines
- High temperature superconducting current lead quenched (7th April)
 - Invoked quench of 11 magnets
- Injection Kicker Flashover (18th April)
 Not pretty, heavy beam loss

Lifetimes during a fill (1092 bunches)

- Very good lifetime during the whole process
- Hardly visible when we go in collision

Luminosity lifetime > 20 hours

IP8 Luminosity leveling operational

Needed to get to 1 fb⁻¹ in LHCb given the limit in peak luminosity

LHC precision front

- absolute luminosity normalization
- low, well understood backgrounds
- precision optics for ATLAS-ALFA and TOTEM

precise measurement of the luminous region + beam intensity --> absolute luminosity and cross section calibration

currently ~ 5 % level,

And we've been producing some luminosity

30-May-2011 07:41:43	Fill #: 1816	Energy: 3500 GeV	I(B1): 1.24e+14	4 I(B2): 1.25e+14
	ATLAS	ALICE	CMS	LHCb
Experiment Status	PHYSICS	PHYSICS	NOT_READY	PHYSICS
Instantaneous Lumi (ub.s)^-1	957.572	0.574	945.849	296.325
BRAN Luminosity (ub.s)^–1	930.163	0.970	1009.494	83.206
Fill Luminosity (nb)^–1	20925.5	11.1	21066.8	5766.5
BKGD 1	0.179	0.392	6.482	0.779
BKGD 2	17.508	1.174	0.002	0.381
BKGD 3	8.419	1.398	3.268	1.087
LHCb VELO Position 🛛 🛛 🗛	o: -0.0 mm	STABLE BEAM	IS TOT	EM: STANDBY
Performance over the last 24 Hrs				Updated: 07:41:41
1.2E14 1E14 1E14 6E13 4E13 2E13 08:00 11:00	14:00 17:0	0 20:00	23:00 02:00	-3000 -2000 -1000
— I(B1) — I(B2) — Energy				
Background Background Background Background Background Background Background Background Background Background Back to Data Back to Data Data Back to Data Data Back to Data Back to Data Data Data Data Data Data Data Da	o back f inosity 1	ills with 10	092 bunch 0 ³³ cm ⁻² s ⁻¹	ICS
07:15 07:20 07:25 — ATLAS — AUCE — CMS — LHCb	07:30 07:35	07:40	07:15 07:20 07:25 - Ацсе — смs — LHCb	07:30 07:35 07:40

Peak Luminosity

LHC status

Integrated Luminosity to date (IR1-5/IR8)	1.06 fb ⁻¹ /0.36 fb ⁻¹
Peak Stable Luminosity Delivered	1.26x10 ³³ cm ⁻² s ⁻¹
Maximum number of bunches at 450 GeV/c	1308
Maximum number of bunches in collision	1092
Maximum intensity in collision	1.3x10 ¹⁴ p/beam
Maximum stored energy	73 MJ/beam
Average bunch population	1.2x10 ¹¹ p
Emittance in collision	~2.5 μm
Maximum Luminosity Delivered in one day	56 pb ⁻¹
Maximum Luminosity Delivered in one week	239 pb ⁻¹

Week 23 – the week before last!

Date	Fill number	Time in stable beams	Int. Iumi [pb ⁻¹]	Cause of dump
Mon 6 th	1854	9m	.59	trip of RQ6.L2
Mon-Tues	1855	14h21m	41.3	RTQX2.R1 - FGC
Tue-Wed	1856	10h50m	31.0	Alice dipole trip
Wed	1858	0		Big UFO IP2
Wed-Thu	1859	3h56m	13.4	Electrical glitch
Thu	1862	11h12m	32.4	Trip RSQSX 400 V PS
Thu - Sat	1863	9h43	30.8	PLC DFB-cryo MS L1
Sat - Sun	1864	6h48	23.1	D2.L1 bus bar quench
Sun - Mon	1865	13h36m	42.6	Collimator controls
Mon	1866	20m	1.3	RF Total Voltage Intlk B1
Mon 14 th	1867	8h14m	28.8	RF module trip

It is not always easy! A day in June.

And let's not mention last week.

20-6-2011

- 110 more days at >10³³ cm⁻²s⁻¹ and an efficiency for physics (Hubner factor) of 0.2 gives another 2 to 3 fb⁻¹
- Main known unknowns: UFOs and SEU

25 ns studies to come during MDs (to sort out injection and beam stability issues) and possibly an operational development period to validate scrubbing and future operation

- Number of bunches vs. bunch population
 - Possibility to reach 540 bunches but likely limited to nominal bunch population
- Optics
 - $\hfill\square$ Take over ATLAS and CMS β^* from protons
 - □ Squeeze ALICE to same value β^* = 1.5 m 2 days setup
- Could reach peak luminosities in the range of 1 to $1.4\times10^{26}~cm^{-2}s^{-1}$ and integrate 30 to 50 μb^{-1}
- Short run more sensitive to any prolonged machine problems

- Important to resolve uncertainties regarding feasibility, Pb intensity limit from unequal revolution frequencies at injection, ramp
 - Modulation of long-range beam-beam, transverse feedback, tune-control ...
- Crucial questions are related to injection and ramping
 - □ Effects of protons (say 10% of nominal) on one Pb bunch
 - □ Inject few Pb bunches against some convenient p filling scheme
 - □ Possible in 2011 (OK in 2012)
 - Detailed planning of MD being worked out

- Physics data-taking until end of 2012
- Following measurements of the copper stabilizers resistances during the Christmas stop, we will reevaluate the maximum energy for 2012 (Chamonix 2012)
- Baseline is probably 50 ns
 - Better emittances from injectors with potential to push lower, better performance for a given total beam intensity
 - □ Possible to push up bunch intensity
 - □ But first see what 25 ns brings...

Given up making predictions of integrated luminosity!

- The LHC is a beautiful machine (although some times temperamental) a real testament to those that built it.
- High intensity was known to require more careful control of the machine parameters and to potentially bring a host of other issues into play

 $\hfill\square$ Work very much in progress

- 50 ns has proven to be a good choice more potential
- > 1 fb-1 delivered to ATLAS and CMS
- ~0.36 fb-1 delivered to LHCb
- How much higher in peak luminosity we can go for ATLAS and CMS will depend on extent of UFOs, SEUs etc.
 - □ Aiming for 1380 bunches...