

Recents Results from BaBar

Nicola Neri INFN - Sezione di Milano on behalf of the BaBar collaboration

2nd International Conference on Particle Physics Doğuş University, İstanbul, Turkey 20-25 June 2011

Outline

Introduction:

- general overview of the detector and data sample;
- CKM matrix and Unitarity Triangle: the legacy of the B factories;

Recent results:

- Charm physics:
 - Search for T and CP violation; search for flavor-changing neutral current (FCNC) processes.
- Spectroscopy:
 - Searches for h_b(1P) state;
 - ▶ $\eta_c(1S,2S) \rightarrow K^+K^-\pi^+\pi^-\pi^0.$
- Studies of B_s and B decays:
 - ► BR($B_s \rightarrow X \mid v_l$) & B_s fraction: f_s
 - ▶ $B \rightarrow \Phi \Phi K; B^{-} \rightarrow D^{0}K^{-};$

Conclusions

Introduction

Nicola Neri - Recent Results from BaBar

25 June 2011

Nicola Neri - Recent Results from BaBar

INFN Main goal of the B factories

6

Verify the Cabibbo-Kobayashi-Maskawa (CKM) mechanism of quark mixing and CP violation with 3 generations of quarks.

Before the B factories (BaBar and Belle)

Constraints on the Unitarity Triangle

Recent results: Charm physics

Nicola Neri - Recent Results from BaBar

25 June 2011

CP violation in D decays with a K_S in final state

<u>Standard Model</u>: CP violation from KM phase in CKM quark mixing matrix:

$$\begin{bmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta + \frac{i}{2}\eta\lambda^2) \\ -\lambda & 1 - \frac{\lambda^2}{2} - i\eta A^2\lambda^4 & A\lambda^2(1 + i\eta\lambda^2) \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

- Charmed Mesons:
 - CP violation is CKM suppressed $\mathcal{O}(10^{-3})$ or less
 - The presence of a K⁰_S introduces CPV of (0.332±0.006)% from CP violation K⁰-K⁰ mixing
 - Experimental Sensitivity O(10⁻³)

1% Signal = New Physics

FW-BW asymmetry due to γ -Z interference

and to detector efficiency asymmetry

Search for CP violation in $D^{\pm} \rightarrow K^0 {}_{S} \pi^{\pm}$

CP violation asymmetry

Time-integrated CPV measurements

D⁺→K₅⁰π⁺ ^A₀

A_{CP}=[-0.44±0.13(stat)±0.10(sys)]% (BaBar 470fb⁻¹)

A_{CP}=[-0.71±0.19(stat)±0.20(sys)]% (Belle 673fb⁻¹)

Also CDF recently provided a very competitive result in $D^0 \rightarrow \pi^+ \pi^ A_{CP}(D^0 \rightarrow \pi^+ \pi^-) = [0.22 \pm 0.24 \text{ (stat.)} \pm 0.11 \text{ (syst.)}]\%$ arXiv:1012.2415 [hep-ex] $5.94 \text{ fb}^{-1} \text{ of data}$

Search for CPV using T-odd correlations in $D_{(s)}^+ \rightarrow K^+ K_S \pi^+ \pi^-$ decays

I.I. Bigi hep-ph/0107102 (2001)

W. Bensalem, A. Datta and D. London, Phys. Rev. D66, 094004 (2002)
W. Bensalem and D. London, Phys. Rev. D64, 116003 (2001)
W. Bensalem, A. Datta and D. London, Phys. Lett. B538, 309 (2002)

- It is a measurement of T violation and of CP violation assuming CPT is conserved.
- T-odd observable: $C_T = \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})$

$$A_T = \frac{\Gamma(D^+_{(s)}, C_T > 0) - \Gamma(D^+_{(s)}, C_T < 0)}{\Gamma(D^+_{(s)}, C_T > 0) + \Gamma(D^+_{(s)}, C_T < 0)}$$

measured on D^+

- Final state interaction (FSI) could introduce fake T-odd asymmetries $A_T \neq 0$.
- T-violating observable, removes FSI effects:

$$\mathcal{A}_T = \frac{1}{2} (A_T - \bar{A}_T)$$
 measured on D-

520 fb⁻¹

Submitted to PRD (RC) $arXiv:1105.4410 \ [hep-ex]$ 520 fb⁻¹ $A_T(D^+) = (+11.2 \pm 14.1_{stat} \pm 5.7_{syst}) \times 10^{-3}$ $\bar{A}_T(D^-) = (+35.1 \pm 14.3_{stat} \pm 7.2_{syst}) \times 10^{-3}$ $A_T(D^+_s) = (-99.2 \pm 10.7_{stat} \pm 8.3_{syst}) \times 10^{-3}$ $\bar{A}_T(D^-_s) = (-72.1 \pm 10.9_{stat} \pm 10.7_{syst}) \times 10^{-3}$ $\bar{A}_T(D^-_s) = (-72.1 \pm 10.9_{stat} \pm 10.7_{syst}) \times 10^{-3}$ D^+ decays

Physics motivations for studying $D^0 \rightarrow \gamma \gamma$ decay

• FCNC Decay

INFN

- Forbidden at the tree-level
- 1-loop GIM suppressed
- Dominated by long distance effects [1]
 - Short-range (2-loop dominate): B(D⁰-> $\gamma\gamma$) \approx 3 X 10⁻¹¹
 - Long-range (VMD contribution dominates):

B(D⁰-> γγ) \approx 3.5 X 10⁻⁸

- However, possible 10² enhancement from new physics (gluino-exchange of MSSM) [2]
- Within the range of BaBar sensitivity.
- Excellent (but difficult) mode to search for new physics

[1] Burdman et al. hep-ph/0112235v2 1 Mar 2002
[2] S. Prelovsek and D. Wyler, hep-ph/0012116v1 11 Dec 2000

BABAR.

Physics interest in searching for FCNC decays

Search for Flavor-Changing Neutral-Current (FCNC) decays FCNC decays only occur in loop diagrams in SM:

Charm decays heavily GIM suppressed in SM: $BF(c \rightarrow ull) \sim 10^{-8}$

New physics can introduce new particles into loop

Some models increase BF($c \rightarrow ull$) to 10⁻⁶-10⁻⁵

Also look for exotic decays violating lepton flavor and/or lepton number

Standard Model predictions for signal and bkg

• While FCNC predicted to be low in SM, do have contribution from leptonic decays of intermediate resonances in $D_{(s)}^+ \rightarrow h^+ V, V \rightarrow l^+ l^-$

At current sensitivity, only ϕ resonance contributes Can be removed by cut on l^+l^- invariant mass

Validating the analysis using control modes

- - Reverse l⁺l⁻ mass cut: 0.995<m(e⁺e⁻)<1.030 GeV/c² 1.005<m(μ⁺μ⁻)<1.030 GeV/c²
- Significant signal seen in 3 of 4 modes
- · Yield is about as expected
 - 1.5 σ low in $D_s^+ \rightarrow \pi \phi$, $\phi \rightarrow e^+ e^-$

388 fb⁻¹

Decay mode	Yield (events)	Efficiency (%)	Expected yield (events)
$D^+ \to \pi^+ \phi_{e^+e^-}$	$21.8 \pm 5.8 \pm 1.5$	5.65	22.2 ± 1.1
$D^+ \to \pi^+ \phi_{\mu^+\mu^-}$	$7.5 \pm 3.4 \pm 1.4$	1.11	4.5 ± 0.4
$D_s^+ \to \pi^+ \phi_{e^+e^-}$	$62.8 \pm 9.9 \pm 3.0$	6.46	79 ± 3
$D_s^+ \to \pi^+ \phi_{\mu^+\mu^-}$	$12.7 \pm 4.3 \pm 2.6$	1.07	13.1 ± 1.2

Fit results and comparison with previous limits

- Most channels improve upon previous limits
 - Many modes by more than order of magnitude
 - Dimuon modes have the worst limits (lowest efficiency)

34 E/91 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS 68 E791 52 CLEO-c 36 FOCUS 630 E791 630 E791 340 E653	$D \rightarrow \pi^{-} \mu^{+} \mu^{+} 2.0$ $D^{+} \rightarrow \pi^{-} \mu^{+} e^{+} 2.0$ $D_{s}^{+} \rightarrow \pi^{-} e^{+} e^{+} 4.1$ $D_{s}^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+} 14$ $D_{s}^{+} \rightarrow \pi^{-} \mu^{+} e^{+} 8.4$ $D^{+} \rightarrow K^{-} e^{+} e^{+} 0.9$ $D^{+} \rightarrow K^{-} \mu^{+} \mu^{+} 16$ $D^{+} \rightarrow K^{-} \mu^{+} \mu^{+} 15$ $D_{s}^{+} \rightarrow K^{-} \mu^{+} \mu^{+} 15$ $D_{s}^{+} \rightarrow K^{-} \mu^{+} e^{+} 6.5$ $A_{c}^{+} \rightarrow \overline{p} e^{+} e^{+} 2.5$ $A_{c}^{+} \rightarrow \overline{p} \mu^{+} \mu^{+} 9.4$ $A_{c}^{+} \rightarrow \overline{p} \mu^{+} e^{+} 16$ BaBar preliminary	3 50 E791 1 18 CLEO-0 4 29 FOCUS 4 730 E791 9 3.5 CLEO-0 13 FOCUS 13 FOCUS 130 E687 2 17 CLEO-0 3 13 FOCUS 4 680 E791 7 New Secure 6 results Secure 3 388 fb-1
34 E/91 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS 68 E791 52 CLEO-c 36 FOCUS 630 E791 630 E791 340 E653	$D \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \rightarrow K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \rightarrow K^{-} \mu^{+} \mu^{+} \qquad 10$ $D^{+} \rightarrow K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \rightarrow K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \rightarrow K^{-} \mu^{+} e^{+} \qquad 6.1$ $A_{c}^{+} \rightarrow \overline{p} \mu^{+} \mu^{+} \qquad 9.4$ $A_{c}^{+} \rightarrow \overline{p} \mu^{+} e^{+} \qquad 10$	1 18 CLEO-0 1 18 CLEO-0 4 29 FOCUS 4 730 E791 9 3.5 CLEO-0 9 3.5 CLEO-0 9 13 FOCUS 9 130 E687 2 17 CLEO-0 3 13 FOCUS 4 680 E791 7 New 13 6 results
34 E/91 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS 68 E791 52 CLEO-c 36 FOCUS 630 E791 630 E791 340 E653	$D^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \to K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 16$ $D^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 12$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 6.1$ $A_{c}^{+} \to \overline{p} \mu^{+} \mu^{+} \qquad 9.4$ $A_{c}^{+} \to \overline{p} \mu^{+} e^{+} \qquad 16$	1 18 CLEO-0 4 29 FOCUS 4 730 E791 9 3.5 CLEO-0 0 13 FOCUS 130 E687 2 17 CLEO-0 3 13 FOCUS 4 680 E791 7 New 13 6 results
34 E/91 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS 68 E791 52 CLEO-c 36 FOCUS 630 E791 630 E791	$D^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \to K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 16$ $D^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 13$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 6.1$ $A_{c}^{+} \to \overline{p} e^{+} e^{+} \qquad 2.5$ $A_{c}^{+} \to \overline{p} \mu^{+} \mu^{+} \qquad 9.4$	1 18 CLEO-0 1 18 CLEO-0 4 29 FOCUS 4 730 E791 9 3.5 CLEO-0 9 3.5 CLEO-0 9 13 FOCUS 9 130 E687 2 17 CLEO-0 3 13 FOCUS 13 FOCUS 680 13 FOCUS 680 14 New 6 15 New 6 16 results 10
34 E791 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS 68 E791 68 E791 52 CLEO-c 36 FOCUS 630 E791	$D^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \to K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 10$ $D^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 13$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 6.1$ $A_{c}^{+} \to \overline{p} e^{+} e^{+} \qquad 2.7$ $A_{c}^{+} \to \overline{p} \mu^{+} \mu^{+} \qquad 9.4$	1 18 CLEO-0 1 18 CLEO-0 4 29 FOCUS 4 730 E791 9 3.5 CLEO-0 9 3.5 CLEO-0 9 13 FOCUS 9 13 FOCUS 9 130 E687 2 17 CLEO-0 3 13 FOCUS 4 680 E791 7 New 4 6 results 6
34 E/91 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS 68 E791 68 E791 52 CLEO-c 36 FOCUS	$D^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \to K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 10$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 6.1$ $A_{c}^{+} \to \overline{p} e^{+} e^{+} \qquad 2.5$ $A^{+} \to \overline{p} \mu^{+} \mu^{+} \qquad 9.4$	1 18 CLEO-0 1 18 CLEO-0 4 29 FOCUS 4 730 E791 9 3.5 CLEO-0 1 3.5 CLEO-0 1 30 E687 2 17 CLEO-0 3 13 FOCUS 4 13 FOCUS 5 13 FOCUS 13 FOCUS 13 13 FOCUS 13 14 680 E791 7 New 14
34 E791 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS 68 E791 68 E791 52 CLEO-c	$D^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \to K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 16$ $D^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 13$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 13$ $D_{s}^{+} \to K^{-} \mu^{+} e^{+} \qquad 6.1$ $A^{+} \to \overline{v} e^{+} e^{+} \qquad 2.2$	1 18 CLEO-(4 29 FOCUS 4 730 E791 9 3.5 CLEO-(0 13 FOCUS 9 130 E687 2 17 CLEO-(3 13 FOCUS 4 13 CLEO-(3 13 FOCUS 4 13 FOCUS 13 FOCUS 13 14 15 FOCUS 15 1680 E791
34 E791 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS 68 E791 68 E791	$D^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 0.2$ $D^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 10$ $D^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.2$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 12$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 13$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 13$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 13$	50 E791 1 18 CLEO-0 4 29 FOCUS 4 730 E791 9 3.5 CLEO-0 9 3.5 CLEO-0 9 13 FOCUS 9 130 E687 2 17 CLEO-0 3 13 FOCUS 4 13 FOCUS
34 E791 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS 68 E791	$D^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \to K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 10$ $D^{+} \to K^{-} \mu^{+} e^{+} \qquad 1.9$ $D_{s}^{+} \to K^{-} e^{+} e^{+} \qquad 5.2$ $D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 13$	Josephil Ergin 1 18 CLEO-or 4 29 FOCUS 4 730 E791 9 3.5 CLEO-or 13 FOCUS 130 E687 2 17 CLEO-or 3 13 FOCUS
34 E791 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c 9.2 FOCUS	$D \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \rightarrow \pi^{-} e^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \rightarrow K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \rightarrow K^{-} \mu^{+} \mu^{+} \qquad 10$ $D^{+} \rightarrow K^{-} \mu^{+} e^{+} \qquad 1.9$ $D^{+} \rightarrow K^{-} \mu^{+} e^{+} \qquad 5.9$	50 E791 1 18 CLEO-0 4 29 FOCUS 4 730 E791 9 3.5 CLEO-0 13 FOCUS 130 E687 17 CLEO-0
34 E/91 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791 3.0 CLEO-c	$D^{+} \to \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \to \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D^{+}_{s} \to \pi^{-} e^{+} e^{+} \qquad 4.1$ $D^{+}_{s} \to \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D^{+}_{s} \to \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \to K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \to K^{-} \mu^{+} \mu^{+} \qquad 10$ $D^{+} \to K^{-} \mu^{+} e^{+} \qquad 10$	50 E791 1 18 CLEO-0 4 29 FOCUS 4 730 E791 9 3.5 CLEO-0 13 FOCUS 130 F687
34 E/91 34 E791 22 CLEO-c 26 FOCUS 610 E791 610 E791	$D \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D_{s}^{+} \rightarrow \pi^{-} e^{+} e^{+} \qquad 4.1$ $D_{s}^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D_{s}^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \rightarrow K^{-} e^{+} e^{+} \qquad 0.9$ $D^{+} \rightarrow K^{-} u^{+} u^{+} \qquad 10$	50 E791 1 18 CLEO-o 4 29 FOCUS 4 730 E791 9 3.5 CLEO-o 13 FOCUS
34 E791 34 E791 22 CLEO-c 26 FOCUS 610 E791	$D^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D^{+}_{s} \rightarrow \pi^{-} e^{+} e^{+} \qquad 4.1$ $D^{+}_{s} \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D^{+}_{s} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 8.4$ $D^{+} \rightarrow K^{-} e^{+} e^{+} \qquad 0.9$	1 18 CLEO-0 1 29 FOCUS 1 730 E791 3 5 CLEO-0
34 E791 34 E791 22 CLEO-c 26 FOCUS	$D^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 2.0$ $D^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D^{+}_{s} \rightarrow \pi^{-} e^{+} e^{+} \qquad 4.1$ $D^{+}_{s} \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 14$ $D^{+}_{s} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 8.4$	1 18 CLEO-0 1 29 FOCUS 1 730 F791
34 E/91 34 E791 22 CLEO-c	$D^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D^{+}_{s} \rightarrow \pi^{-} e^{+} e^{+} \qquad 4.1$ $D^{+}_{s} \rightarrow \pi^{-} \mu^{+} \mu^{+} \qquad 14$	1 18 CLEO-0
34 E/91 34 E791	$D^{+} \rightarrow \pi^{-} \mu^{+} e^{+} \qquad 2.0$ $D^{+} \rightarrow \pi^{-} e^{+} e^{+} \qquad 4.1$	9 50 E791 1 18 CLEO-0
34 E/91	$D^+ \rightarrow \pi^- \mu^+ e^+$ 2.0	
3.9 00	$D^+ \rightarrow \pi^- e^+ e^+ = 1.3$ $D^+ \rightarrow \pi^- u^+ u^+ = 2.0$	
	$\frac{D}{D^{+}}$ $=$ $\frac{1}{2}$	
	Decay mode 90% CI	2
	(10-6)	
	5.9 CLEO-c	5.9 CLEO-c 3.9 D0 3.4 E791 $D^+ \to \pi^- e^+ e^+$ $D^+ \to \pi^- \mu^+ \mu^+$ $D^+ \to \pi^- \mu^+ \mu^+$ $D^+ \to \pi^- \mu^+ e^+$ $D^+ \to \pi^- \mu^+ e^+$

Measurement of the decay constant f_{Ds} with $D_s{}^+{\rightarrow}l{}^+\nu$ decays

INFN Measurement of $D_s^+ \rightarrow l^+ v$ and f_{Ds} *Phys. Rev. D* 82, 091103(*R*) (2010) 52 | fb⁻¹ (67.2±1.5)x10³ events Absolute decay rate measurement New Technique with full reconstruction of the event $\times 1000$ Events / 6 MeV/c² Charm tag candidate D,* $(D^{o(\star)}, D^{+(\star)}, \Lambda_{c}^{+}) \in e^{+}$ r kelimina k Y $(p_v = p_{miss})$ х Flavor balancing K / Rest of event (from 1.85 1.9 1.95 2 2.05 2.1baryon balancing p cc hadronization) $m_{recoil}(DKX\gamma)$ (GeV/c^2)

Inclusive D_s candidates

- The signal consists of D_s* candidates decaying to D_s γ
- The D_s candidate is reconstructed from the four-momentum recoiling
- against the DKX γ (D = D^{0(*)}, D^{+(*)}, Λ_c^+ ; K = K_s, K⁺,(p); X = π^+ , π^0)
- Within this sample, the $D_s^+ \rightarrow l^+ v_l \ (l = e, \mu, \tau)$ events are selected
 - One more track, identified as e/μ , is required

Phys. Rev. D 82, 091103(R) (2010) 521 fb⁻¹

$$f_{D_s} = (258.6 \pm 6.4(stat) \pm 7.5(syst)) \text{ MeV}$$

By-product of the analysis $BR(D_s \rightarrow K^-K^+\pi^-) = (5.78 \pm 0.20 \pm 0.30)\%$ Consistent with CLEO-c result $(5.50 \pm 0.23 \pm 0.16)\%$ Phys. Rev. Lett. 100, 161804 (2008)

Nicola Neri - Recent Results from BaBar

Recent results: Spectroscopy

Dipion Recoil in Y(3S)

- Analysis goal: search for $Y(3S) \rightarrow \pi^+\pi^- h_b(1P)$
- Procedure
 - Reconstruct pair of oppositely charged tracks
 - Cuts on E_{total} , R_2 , N_{tracks} , K_S^{o} veto (flight length, cos α)
 - Define $\pi^+\pi^-$ recoil mass: $m_R^2 = (m_{\Upsilon(3S)} E_{\pi^+\pi^-}^*)^2 |P_{\pi^+\pi^-}^*|^2$
 - χ^2 fit to m_R
- Peaking components
 - $\Upsilon(3S) \rightarrow \pi^+ \pi^- h_b$ signal
 - $\Upsilon(3S) \rightarrow \pi^+ \pi^- \Upsilon(2S)$
 - $\Upsilon(2S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$
 - $\chi_{b1,2}(2P) \rightarrow \pi^+\pi^-\chi_{b1,2}(1P)$
- Smooth backgrounds
 - $\bullet \ \mathsf{K}_{\mathsf{S}}^{o} \!\rightarrow\! \pi^{\!+} \! \pi^{\!-}$
 - Non-peaking background

arXiv:1105.4234 [hep-ex] Submitted to PRD (RC)

108 M Υ (3S) events

arXiv:1105.4234 [hep-ex] Submitted to PRD (RC) 108 M Y(3S) events

$\sum_{\substack{\text{INFN} \text{Search for } h_b(1P) \text{ in} \\ \Upsilon(3S) \rightarrow \pi^{o}h_b(1P)(\gamma \eta_b(1S)) \text{ decays } 122 \text{ M} \Upsilon(3S) \text{ events}} } }$

Analysis Strategy

- Reconstruct $\pi^{o}(\gamma_{1}\gamma_{2}) + \gamma$
- Require E_{γ} consistent with $h_b(1P) \rightarrow \gamma \eta_b(1S)$
- \blacktriangleright Cuts on N_{tracks}, R_2, π^o veto (all γ candidates), π^o cos θ_h
- Define π^{o} missing mass: $m_{recoil}(\pi^{o})^2 = \sqrt{[(m_{\Upsilon(3S)} E^*_{\pi^o})^2 P^*_{\pi^o}^2]}$

Constrain m_π° to improve resolution
 N_π° from m_{γ1γ2} fit in each m_{recoil}(π°) bin

- ▶ χ^2 fit of m_{recoil}(π^{o}) distribution
- ▶ h_b(1P) signal: Double Crystal Ball
- ▶ Background: 6th order polynomial, from reweighted MC

arXiv:1102.4565 [hep-ex] INFN Submitted to PRD (RC) $\Upsilon(3S) \rightarrow \pi^{o}h_{b}(1P)(\gamma \eta_{b}(1S)) \text{ Results} \overset{\text{Submitted to PRD (RC)}}{122 \text{ M} \Upsilon(3S) \text{ events}}$

Quantity	Value	$\sum_{n=3000}^{3} (c) BaBar$
Yield	9145±2804±1082 evts.	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
Significance	3.0 σ	
M [h _b (IP)]	9902±4±1 MeV/c ²	
$\begin{array}{l} BF(Y(3S){\rightarrow}\pi^{\mathrm{o}}h_{b})\\ x\;BF(h_{b}{\rightarrow}\gamma\eta_{b}) \end{array}$	$(3.7\pm1.1\pm0.7) \times 10^{-4}$	
		-2000 9.75 9.8 9.85 9.9 9.95

- Measured mass agrees with expectation
 - $m_{h_b(1P)} = (m_{\chi_{b0}(1P)} + 3m_{\chi_{b1}(1P)} + 5m_{\chi_{b2}(1P)}) / 9 \approx 9900 \text{ MeV/c}^2$ Spin weighted average value.
- Branching fraction consistent with theory
- First evidence for $h_b(1P)$, confirmed by Belle

 $m_{recoil}(\pi^0)$ (GeV/c²)

INFN Study of $\gamma \gamma \to K^+ K^- \pi^+ \pi^- \pi^0$ and $\gamma \gamma \rightarrow K^0_{\ S} K \pi$ decays

Search for $\eta_c(2S) \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$, $K^0_S K \pi$ in two-photon "no tag" events. •Precision measurement of $\eta_c(2S)$ mass. (520 fb⁻¹)

World average width measurement has 50% uncertainty.

Undetected electron and positron: quasi-real photons $(q^2 \sim 0)$ allows:

 $J^{P} = 0^{+}, 0^{-}, 2^{+}, 2^{-}, 3^{+}, 4^{-}, 4^{+}...$

[Yang, Phys. Rev. 77, 242 (1950)] J > 2 is phase space suppressed.

Clear experimental signatures:

Few charged-particle tracks in each event:

Limited activity in the calorimeter.

arXiv:1103.3971 Accepted by PRD

INFN

Main background sources:

(1) $e^+e^- \rightarrow qq$ (q = u, d, s, c), $e^+e^- \rightarrow \Upsilon(nS)$:

Analysis technique

suppressed requiring total final state transverse momentum $p_{\tau} < 0.15 \text{ GeV/c};$

(2) ISR events with J/ψ or $\psi(2S)$ production: suppressed requiring high missing mass $M^{2}_{miss.}$

(520 fb⁻¹)

arXiv:1103.3971

Accepted by PRD

Accepted by PRD	(520 fb ⁻¹)
$m(\eta_c(2S)) = 3638.5$ $\Gamma(\eta_c(2S)) = 13.4$	$\pm 1.5 \pm 0.8 \text{ MeV}/c^2 \pm 4.6 \pm 3.2 \text{ MeV}$
Me tha	asurement more precise In the world average
Process	$\Gamma_{\gamma\gamma} \times \mathcal{B} \ (\text{keV} \)$
$\eta_c(1S) \rightarrow K\overline{K}\pi$	$0.386 \pm 0.008 \pm 0.021$
$\chi_{c2}(1P) \rightarrow K\overline{K}\pi$	$(1.8 \pm 0.5 \pm 0.2) imes 10^{-3}$
$\eta_c(2S) \rightarrow K\overline{K}\pi$	$0.041 \pm 0.004 \pm 0.006$
$\chi_{c2}(2P) \rightarrow K\overline{K}\pi$	$< 2.1 imes 10^{-3}$

5.3 significance

$\begin{array}{c} Recent\ results:\\ Studies\ of\ B_s\ and\ B\ decays \end{array}$

Nicola Neri - Recent Results from BaBar

INFN

$= BR(B_s \rightarrow X \mid v_l) \& B_s \text{ fraction: } f_s \text{ above } \Upsilon(4S) \overset{\sim}{\swarrow}$

• semi-leptonic $\mathbf{B}_{u,d}$: BR($\mathbf{B}_{u,d} \rightarrow \mathbf{X} \mid v_{l}$)=(10.99-10.33±0.28)% well-known

• Semi-leptonic B_s : BR($B_s \rightarrow X \mid v_l$) not well-known

- (7.9±2.4)% (PDG from LEP@ Z^0 includes P(b \rightarrow B_s)=(10.5±0.9)%)
- (10.2±0.8±0.9)% (Belle unpublished arXiv:0710.2548)
- LHCb measures ratios of semi-exclusive decays to total inclusive (arXiv:1102.0348): BR(B_s \rightarrow (D_{s2}^{*}/D_{s1})⁺ Xµv_µ) / BR(B_s \rightarrow Xµv_µ)
- \Rightarrow Use the 4.1 fb⁻¹ scan above Υ (4S) ((25.500±6200) $B_s^{(*)}B_s^{(*)}$) to measure both

INFN

$BR(B_{s} \rightarrow X \mid v_{l}) \& B_{s} \text{ fraction: } f_{s} \text{ above } \Upsilon(4S)^{\text{BABAR}}$

→Measure number of events as a function of CM energy:

- **B-Hadron events** = $R_b \left[\frac{f_s}{f_s} \epsilon_{1s} + (1 \frac{f_s}{f_s}) \epsilon_1 \right]$
- Inclusive ϕ rate = $R_b \left[f_s P(B_s \bar{B}_s \to \phi X) \epsilon_{2s} + (1 f_s) P(B\bar{B} \to \phi X) \epsilon_2 \right]$

$$R_b \left[f_s P(B_s \bar{B}_s \to \phi \ell \nu \mathbf{X}) \epsilon_{3s} + (1 - f_s) P(B \bar{B} \to \phi \ell \nu \mathbf{X}) \epsilon_3 \right]$$

→Subtract light qq (q=u,d,s,c) continuum from off-peak Υ (4S) and account for B_{u,d} contributions from Υ (4S) data Continuum-subtracted ϕ yield

→ extract B_s production fraction f_s at each CM energy point and perform a global χ^2 fit to the various yields to extract the semi-leptonic $BR(B_s \rightarrow X | v_l)$

 In the Standard Model, the tree and penguin amplitudes have the same weak phase, so no direct CPV is expected.

- Non-zero direct CP asymmetry would be a smoking gun for New Physics.
 - Could be as large as 40%! (Haizumi, Phys. Lett. **B 583**, 285 (2004)).
- Results based on 464M $B\overline{B}$ events Accepted for publication by PRD \Rightarrow Supersedes previous BABAR measurement PRL 97, 261803 (2006).

$B \rightarrow \phi \phi K \ results$ Accepted by PRD

- Maximum likelihood (ML) fits using m_{ES} , ΔE , Fisher (and the 2 ϕ masses for BF)
- Use 5 zones in the $m_{\phi 2}$ vs. $m_{\phi 1}$ plane to distinguish final states with 5 kaons
 - $B \rightarrow 5K$ fits in the different zones
 - Use cross-zone fractions from MC to estimate peaking background
- Branching fractions for $m_{\phi\phi} < 2.85 \text{ GeV/c}^2$: • $\mathbf{BF}(B^+ \rightarrow \phi\phi K^+) = (5.6 \pm 0.5 \pm 0.3) \ 10^{-6}$ • $\mathbf{BF}(B^0 \rightarrow \phi\phi K^0) = (4.5 \pm 0.8 \pm 0.3) \ 10^{-6}$

First observation (> 5σ)!

- Direct CPV
- $\begin{array}{l} \mbox{ Below the } \eta_c : m_{\varphi\varphi} < 2.85 \ GeV/c^2 \\ A_{CP} \ (B^+ \rightarrow \varphi \varphi K^+) = -0.10 \pm 0.08 \pm 0.02 \\ \mbox{ In the } \eta_c \ region: 2.94 < m_{\varphi\varphi} < 3.02 \ GeV/c^2 \end{array}$

 $A_{CP} (B^+ \rightarrow \phi \phi K^+) = -0.09 \pm 0.10 \pm 0.02$

 \Rightarrow Both A_{CP} consistent with 0 & SM

 The "ADS*" technique equalizes the magnitude of the interfering amplitudes

*ADS stands for D. Atwood, I. Dunietz, A. Soni, PRL 78, 3257 (1997); PRD 63, 036005 (2001).

Search for b→u transitions in B⁻→[K⁺ $\pi^{-}\pi^{0}$]_DK⁻ decays

arXiv:1104.4472 [hep-ex] Accepted for publication by PRD BABAR Results based on 474 M BB pairs

 \blacktriangleright Extract ratio of OS wrt SS events, mainly sensitive to parameter r_B which drives sensitivity to CKM phase γ

$$R^{+} = \frac{\Gamma(B^{+} \to [\bar{f}]_{D}K^{+})}{\Gamma(B^{+} \to [f]_{D}K^{+})} = \frac{\# \text{ OS}}{\# \text{ SS}}$$
$$R^{-} = \frac{\Gamma(B^{-} \to [f]_{D}K^{-})}{\Gamma(B^{-} \to [\bar{f}]_{D}K^{-})} = \frac{\# \text{ OS}}{\# \text{ SS}}$$

Accounting for 3-body $D^0 \rightarrow K^{\pm}\pi^{\mp}\pi^0$ decay amplitudes:

$$R^{+} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}k_{D}\cos(\gamma + \delta)$$

$$R^{-} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}k_{D}\cos(\gamma - \delta)$$

 k_D and δ_D can be measured at charm factories using the Quantum-Correlated Measurements

$\begin{array}{c} \overbrace{\text{in }B^- \to [K^+ \pi^- \pi^0]_D K^- \text{ decays}}^{\text{in }N^- \text{Search for }b \to u \text{ transitions}} \\ in B^- \to [K^+ \pi^- \pi^0]_D K^- \text{ decays} \end{array} \begin{array}{c} arXiv: 1104.4472 \ [hep-ex] \\ Accepted for publication by PRD \\ Results \text{ based on }474 \text{ M }B\overline{B} \text{ pairs} \end{array}$

larger systematic error due to OS peaking bkg.

 $m_{rs} (GeV/c^2)$ 05.2 5.22 5.24

20

m_{ES} distribution for OS events

(a)

25 June 201 I

 $5.26 m_{\rm FS} \, ({\rm GeV/c^2})$

Conclusions

Nicola Neri - Recent Results from BaBar

25 June 2011

- An overview of the recent BaBar results has been presented covering several topics: Charm physics, spectroscopy, studies of B_s and B decays.
- Present results are in agreement with Standard Model expectations within the uncertainties.
- Flavor physics provides an alternative and complementary path for searching for physics beyond the Standard Model with respect to direct searches at LHC.
- A larger data sample, compared to the BaBar one, is required in order to perform a stringent test of the present theory by looking for unpredicted effects.
- Present and future experiments will tell us:

Backup slides

.

Status of art

51

BaBar results well beyond the original goal

 $\eta_c(IS)$ observed by several experiments but there is a large spread in mass and width measurements $\Gamma(\eta_c(IS)) \sim I5$ MeV (J/ ψ and $\psi(2S)$) radiative decays $\Gamma(\eta_c(IS)) \sim 30$ MeV (B-decays and $\gamma\gamma$ production)

Until recently has only been observed in exclusive decay to $KK\pi$ Precise measurement of m($\eta_c(2S)$) will help discriminate among different charmonium models

