ATLAS Physics Results with 2010 Data and Preliminary Results with 2011 Data

Reiner Hauser Michigan State University

on behalf of the ATLAS Collaboration

2nd International Conference on Particle Physics In Memoriam Engin Arik and Her Colleagues Doğuş University, Istanbul 20th June 2011

Overview

The ATLAS Experiment

- → Data Taking Performance
- → Detector Performance

→ Physics Results

- → Jets, W, Z
- → Тор
- → Higgs
- → SUSY
- → New Physics
- → Heavy Ion

The ATLAS Experiment

The ATLAS Detector

Detector Status

ATLAS Detector Status

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	96.9%
SCT Silicon Strips	6.3 M	99.1%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.5%
Tile calorimeter	9800	97.9%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trigger	370 k	99.5%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.8%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Chambers	370 k	97.0%
TGC Endcap Muon Chambers	320 k	98.4%

For more details...

 N. Benekos, ATLAS Detector Status and Operations, Improvements during Shutdown, and 2011 Data Taking

– Tuesday, 11:50h

• T. Cornelissen, ATLAS Inner Detector Performance at LHC

– Tuesday, 17:00h

• A. Bingul, ATLAS TRT and its Performance at LHC

Thursday 14:00h

- A. Salzburger, ATLAS Detector Upgrade Plans and Perspectives
 - Thursday 9:50h

Recorded Luminosity

One LHC fill delivers now around the same luminosity as the whole 2010 data taking

Period.

Overall data taking efficiency: ~94 %

Inne D	er Track etector	ting 's		Caloriı	neters		Muon Detectors			rs	Magnets	
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.5	100	89.3	92.7	94.3	99.5	100	99.5	100	99.9	98.5	97.9

Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at Vs=7 TeV between March 13th and June 6th (in %). The inefficiencies in the LAr calorimeter will partially be recovered in the future. The magnets were not operational for a 3-day period at the start of the data taking.

Standard Model Physics

Rediscovering the Standard Model

B and **D** Mesons

Inelastic pp Cross-Section

accepted by Nature Comm

Inclusive Jet and di-jet Cross Section

B jet Cross Section

Multi-Jet Cross Section

Inclusive multi-jet production Compared to LO QCD MC

Direct Photon Cross Sections

|η| < 1.37

Reject photons from π^0 decays and conversions.

1.52 < |η| < 2.37

Compared to NLO QCD calculations

Total W[±] and Z/γ^{*} Cross Sections and their Ratios

	$\sigma^{ m tot}_{W^{(\pm)}} \cdot \operatorname{BR}(W \to \ell \nu)$ [nb]
W^+	$6.257 \pm 0.017 (sta) \pm 0.152 (sys) \pm 0.213 (lum) \pm 0.188 (acc)$
W^{-}	$4.149 \pm 0.014 (sta) \pm 0.102 (sys) \pm 0.141 (lum) \pm 0.124 (acc)$
W	$10.391 \pm 0.022 (sta) \pm 0.238 (sys) \pm 0.353 (lum) \pm 0.312 (acc)$
	$\sigma^{ m tot}_{Z/\gamma^*} \cdot { m BR}(Z/\gamma^* o \ell\ell)$ [nb], 66 < m_{ee} < 116 GeV
Z/γ^*	$0.945 \pm 0.006 (sta) \pm 0.011 (sys) \pm 0.032 (lum) \pm 0.038 (acc)$

Observation $Z \rightarrow \tau \tau \rightarrow e \mu + 4 \nu$

Compatible with SM value: 69.3 ± 5.1 (stat.) ± 15.1 (sys.) 75 events selected with exp background of 6.4 ± 3.7 (stat.) ± 0.9 (sys.)

Wy and Zy Production

High p_T lepton plus photon with $E_T > 15 \text{ GeV}$ $\Delta R(I,\gamma) > 0.7$

	Experimental measurement	SM prediction
	$\sigma^{ m fid}[m pb]$	$\sigma^{ m fid}[m pb]$
$pp \rightarrow e^{\pm} \nu \gamma$	$5.4 \pm 0.7 \pm 0.9 \pm 0.2$	4.7 ± 0.3
$pp \to \mu^{\pm} \nu \gamma$	$4.4 \pm 0.6 \pm 0.7 \pm 0.2$	4.9 ± 0.3
$pp \rightarrow e^+ e^- \gamma$	$2.2 \pm 0.6 \pm 0.5 \pm 0.1$	1.7 ± 0.1
$pp ightarrow \mu^+ \mu^- \gamma$	$1.4 \pm 0.3 \pm 0.3 \pm 0.1$	1.7 ± 0.1
	$\sigma[{ m pb}]$	$\sigma[{ m pb}]$
$pp \rightarrow e^{\pm} \nu \gamma$	$48.9 \pm 6.6 \pm 8.3 \pm 1.7$	42.1 ± 2.7
$pp \to \mu^{\pm} \nu \gamma$	$38.7 \pm 5.3 \pm 6.4 \pm 1.3$	42.1 ± 2.7
$pp \rightarrow l^{\pm} \nu \gamma$	$42.5 \pm 4.2 \pm 7.2 \pm 1.4$	42.1 ± 2.7
$pp \rightarrow e^+ e^- \gamma$	$9.0 \pm 2.5 \pm 2.1 \pm 0.3$	6.9 ± 0.5
$pp ightarrow \mu^+ \mu^- \gamma$	$5.6 \pm 1.4 \pm 1.2 \pm 0.2$	6.9 ± 0.5
$pp \to l^+ l^- \gamma$	$6.4 \pm 1.2 \pm 1.6 \pm 0.2$	6.9 ± 0.5

WW Production

2 isolated leptons (e or $\boldsymbol{\mu})$

Observed: 8 events Expected: 1.7 ± 0.6

 $\sigma = 41^{+20}_{-16}(\text{stat.}) \pm 5(\text{syst.}) \pm 1(\text{lumi.}) \text{ pb}$

http://arxiv.org/abs/1104.5225 Submitted to PRL

Events / 10 GeV 10² Data ATLAS WW Drell-Yan $Ldt = 34 \text{ pb}^{-1}$ 10 Diboson W+jets top 1 $\sigma_{\text{stat+syst}}$ 10⁻¹ 10⁻² 0 20 80 100 120 140 160 180 200 40 60 p₁(leading lepton) [GeV] Events / 20 GeV + Data 10² ATLAS ww Drell-Yan Ldt = 34 pb⁻¹ Diboson 10 W+jets top $\sigma_{\text{stat+syst}}$ 10 10⁻² 50 100 150 200 250 300 0 $M_T(I^+I, E_T^{miss})$ [GeV]

SM: 44 ± 4 pb

WZ Production

Obs: 12 events Background exp: 2 events

 $\sigma_{WZ}^{\text{tot}} = 18^{+7}_{-6}(\text{stat}) \pm 3(\text{syst}) \pm 1(\text{lumi}) \text{ pb}$

SM: 16.9^{+1.2}_{-0.8} pb

Standard Model Cross Section Measurements

L. Dell'Asta: *Electroweak Results with the 2010 ATLAS Data* Tuesday, 17:40h

W+jets Measurement

One of the most important background for many searches. Now reaching up to N_{jet} >= 5

Top Pair Production Cross Section

In all channels: lepton + jet, di-lepton, with and Without b-tagging.

25

Top Mass

Template method in lepton + jets channel.

 $M_{top} = 169.3 \pm 4.0 \pm 4.9 \text{ GeV}$

Plus two additional variations on the template Method.

Also extracted from cross section measurement: $M_{top} = 166.4^{+7.8}$ -7.3 GeV

Single Top Production

M. Barisonzi: QCD and Top Physics Results with the 2010 ATLAS Data Friday 14:40h

Searches for Higgs and other new Physics

Resonant Top Pair Production

Search tt resonances in lepton + jets channel.

Limits on wide and narrow resonances.

Z' : 38pb – 3.2pb for M_{Z'} = 500 to 1300 GeV KK gluon: exclude M < 650 GeV @ 95 CL

$H \rightarrow WW \rightarrow I_V qq, I_V I_V$

31

$H \rightarrow ZZ \rightarrow 4I$

 $H \rightarrow ZZ \rightarrow II_{VV}$, Ilqq

$H \rightarrow \gamma \gamma$

34

52%

6.9

4.9

Higgs Combination

All channels discussed so far, Luminosity \sim 35 pb⁻¹

http://arxiv.org/pdf/1106.2748v2 Submitted to EJP

MSSM Higgs

Search for neutral Higgs boson A, H, h in MSSM.

 $H\to\tau\tau$, 1 leptonic + 1 hadronic decay.

Obs: 206 events, expected: 195 ± 33

Light CP-Odd Higgs $a_1 \rightarrow \mu \mu$

Light higgs in NMSSM Could have extremely low mass ~few GeV

T. Yamamura: *Early Higgs Searches with the ATLAS Data* Monday, 16:00h

SUSY: Missing ET and (b)Jets

SUSY Combined Exclusion

 $W' \rightarrow \mu \nu$ Events 10⁶ Data 2011 ATLAS Preliminary W'(500) $W' \rightarrow \mu \nu$ 10⁵ W'(1000) ∖s = 7 TeV W'(1500) 10⁴ ∫ L dt = 205 pb⁻¹ W 10³ Z ttbar 10² Diboson 10 1 10⁻¹∎ 10⁻² 10² 10³ p_{τ}^{μ} [GeV] Events 10⁶ Data 2011 ATLAS Preliminary W'(500) $W' \rightarrow \mu \nu$ 10⁵ W'(1000) ∖s = 7 TeV W'(1500) 10⁴ ∫ L dt = 205 pb⁻¹ W 10³ Z ttbar 10² Diboson 10 1 10⁻¹ 10-2 10² 10³ E_{Tmiss} [GeV]

 $M_{W'}$ > 1.70 TeV for SSM W'

Heavy Particle $\rightarrow e\mu$

44

Stable Hadronizing Squarks and Gluinos

Di-jet Resonances

 $0.80 < M_{q^*} < 2.50 \text{ TeV}$ $0.80 < M_A^{q^*} < 2.67 \text{ TeV}$ No excess observed Limits on excited quark and axigluon masses

Contact Interactions in di-muon Events

Limit on energy scale of contact Interactions $\Lambda > 4.9$ TeV (constructive) $\Lambda > 4.5$ TeV (destructive) interference

And many more...

ATLAS Searches* - 95% CL Lower Limits (June 6, 2011)

48

*Only a selection of the available results shown

G. Unel: Search for New Physics at ATLAS Monday, 17:40h

Heavy Ion Physics

Heavy Ion: J/Psi, $Z \rightarrow \mu\mu$

Summary

- ATLAS is taking data with high efficiency and excellent detector availability.
- 2010 was used to calibrate the detectors and rediscover the standard model – now we are setting new limits that exceed the Tevatron in many cases.
- More than 1 fb⁻¹ is already recorded
- The excellent LHC performance make more than 3 fb⁻¹ until the end of the year look realistic
 - Exciting times ahead !

More Information

- ATLAS Public Results Page:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome