

Search for New Physics in CP violation measurements @LHCb

Julian Wishahi on behalf of the LHCb Collaboration

2nd International Conference on Particle Physics, Istanbul

LHCb Physics

Main Goal:

Search for New Physics (NP) through precision tests of the Standard Model (SM)

Idea:

Reveal small deviations from SM predictions with precision measurements

- Indirect search for New Physics
 - in rare decays (see talk by Francesco Dettori)
 - in CP violating processes in the B and D sector (this talk)
- Why CP violating processes?
 - CP violation from interference of tree and loop mediated processes

 NP particles can alter SM prediction of CP violation by introducing additional phases in loop processes

Julian Wishahi | Search for NP in CPV measurements @LHCb | ICPP-II Istanbul | 23rd of June 2011

LHCb Physics

Main Goal:

Search for New Physics (NP) through precision tests of the Standard Model (SM)

Idea:

Reveal small deviations from SM predictions with precision measurements

- Indirect search for New Physics
 - in rare decays (see talk by Francesco Dettori)
 - in CP violating processes in the B and D sector (this talk)
- Why CP violating processes?
 - CP violation from interference of tree and loop mediated processes

 NP particles can alter SM prediction of CP violation by introducing additional phases in loop processes

Julian Wishahi | Search for NP in CPV measurements @LHCb | ICPP-II Istanbul | 23rd of June 2011

Detector Performance

- ▶ Data taking at $\sqrt{s} = 7$ TeV
- subsystems work fine
- data taking efficiency >85%
- higher pile-up
 - more b hadrons
 - more tracks, more background

expect ~1 fb⁻¹ in 2011

3

CP Violation in the SM

CP violation in the SM is described by the CKM mechanism

parameterised by the complex unitary CKM matrix

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = V_{\rm CKM} \begin{pmatrix} d\\s\\b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}.$$

- construct unitarity triangles
 - e.g. $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$
 - connect observables of various processes/decays (over-constrained!)
 - inconsistency of measurements
 => hint for New Physics

Julian Wishahi | Search for NP in CPV measurements @LHCb | ICPP-II Istanbul | 23rd of June 2011

CP Violation

- Types
 - direct CPV
 - CPV in mixing
 - CPV in interference of mixing and decay
 - neutral B mesons: Bd and Bs
 - fast oscillation in B_s, slow oscillation in B_d
 - different CKM angles accessible in $B_{\mbox{\scriptsize s}}$ and $B_{\mbox{\scriptsize d}}$
 - time-dependent asymmetry

$$\mathcal{A_{CP}}(t) = \frac{\Gamma(\overline{B}_q^0(t) \to f) - \Gamma(B_q^0(t) \to f)}{\Gamma(\overline{B}_q^0(t) \to f) + \Gamma(B_q^0(t) \to f)}$$

- Crucial information: Initial flavour?

Flavour Tagging

- infer information on production state (tag) from
 - inclusive reconstruction of "sister" b quark decay (opposite side)
 - search for fragmentation remnants of signal B (same side)
- per-event estimation of mistag probability
- need to calibrate flavour taggers on data
- measure and control mistag probability of tagging algorithms
- sensitivity of measured asymmetry is directly related to effective tagging efficiency $\varepsilon_{\rm eff} = \varepsilon_{\rm tag} D^2$

$$\varepsilon_{\rm tag} = \frac{N_R + N_W}{N_R + N_W + N_U} \qquad \omega = \frac{N_W}{N_R + N_W}$$

$$\mathcal{A}_{CP}^{\mathrm{meas}}(t) = \underbrace{(1-2\omega)}_{D} \mathcal{A}_{CP}(t)$$

7

$sin 2\beta$ from $B_d \rightarrow J/\psi$ Ks

- sin2β well measured by B factories
- serves as reference measurement for LHCb
- first measurement of time dependent CP asymmetries @ LHCb

 $\mathcal{A}_{\mathcal{CP}}^{\mathrm{meas}}(t) \approx D \, \sin 2\beta \, \sin \Delta m t$

- best measurement of sin2β at a hadron machine
- dominated by statistical error
- systematic uncertainty will decrease in future

HFAG

Beauty 2011

PRELIMINARY

 $sin(2\beta) \equiv sin(2\phi_1)$

Julian Wishahi | Search for NP in CPV measurements @LHCb | ICPP-II Istanbul | 23rd of June 2011

9

CP measurement in B_s system

- ϕ_s in $B_s \rightarrow J/\psi \phi$.
 - What is ϕ_s ? CP violating phase in interference of mixing and decay of B_s

- **Test:** Is $\phi_s \neq \phi_s^{SM} = -2\beta_s$?
 - precise SM prediction $2\beta_s = (0.0363 \pm 0.0017)$ rad (indirect)
 - if **direct** measurement of ϕ_s shows deviation from SM prediction: New Physics!

Measurement of ϕ_s

$B_s \to J/\psi \; \varphi$ - Untagged Analysis

• no constraint on ϕ_{S}

LHCb CONF 2011-002

tagging needed to reduce four-fold to two-fold ambiguity

Julian Wishahi | Search for NP in CPV measurements @LHCb | ICPP-II Istanbul | 23rd of June 2011 12

$B_s \rightarrow J/\psi \phi$ - Tagged Analysis

First LHCb constraint on ϕ_s

-2.7 < φ_s < -0.5 @ 68% CL

- ambiguity reduced to two fold by use of tagging information
- systematics small compared to statistical uncertainties
- prospect for 2011 data
 - σ(φ_s)≈0.13 rad

LHCb CONF 2011-006

$B_s \rightarrow J/\psi f_0(980)$ – first observation

- 12.8σ significance
- ratio to $J/\psi \phi(K^+K^-)$ production

$$R_{f_0/\phi} = \frac{\Gamma(B_s \to J/\psi f_0, f_0 \to \pi^+ \pi^-)}{\Gamma(B_s \to J/\psi \phi, \phi \to K^+ K^-)} = 0.252^{+0.046+0.027}_{-0.032-0.033}$$

R. Aaij et al. (LHCb Collaboration), Physics Letters B 698 (2011) pp. 115-122, <u>arxiv:hep-ex/1102.2006</u>

- Future plans:
 - alternative measurement of φ_{S}
 - pure CP final state
 - no angular analysis needed

- \blacktriangleright 7.4 σ significance
- Penguin decay like B_s→φφ
- sensitivity to NP in mixing box and penguin diagram
- currently no
 measurement of CPV

LHCb CONF 2011-019

Conclusion and Outlook

- analyses on 2010 dataset show excellent performance of LHCb
 - first CP violation measurements
 - tagged, angular, time-dependent CP analyses
 - new decay modes discovered and studied
- LHCb measurements in 2011 will contribute significantly in constraining the SM
 - Expect world's best measurements of ϕ_s with 2011 dataset!
 - Stay tuned for γ!
 - Interesting CP channels under investigation.

Thank you for listening!

LHCb Detector

- one arm forward spectrometer
- covers 1.9 < η < 4.9</p>
- b pair production correlated in forward/backward direction
- excellent lifetime resolution (~50 fs)
 - boosted particles
 - extraordinary vertex resolution
- tracking stations before and after dipole magnet
- particle identification
 - two RICH detectors
 - calorimetry
 - muon system

