Early Higgs searches with the ATLAS data

Taiki Yamamura (Univ. of Tokyo)

On behalf of the ATLAS collaboration

2nd International Conference on Particle Physics

20/06/2011

LHC status

- The Atlas Detector started to take 7TeV collision data since Mar 30 in 2010.
- **Data taking in 2010 :**
 - Recorded : $45pb^{-1}$ (Good data : ~35-40pb⁻¹)
 - Data taking in 2011 (up to 16/06) :
 - **1fb⁻¹ delivered!** (Peak lumi : 1.2e+32 /cm²/s² was already achieved.)
 - We will take \sim 3fb¹ by the end of this year?

<Data in 2011>

<LHC accelerator>

Outline

Introduction

The result for the Higgs boson search at the ATLAS experiment

- (i) SM Higgs boson
 - H \rightarrow 2 photons with 209pb-1 (2011 data)
 - $H \rightarrow WW$ (2010 data)
 - \checkmark WW \rightarrow lvlv with 35pb-1
 - \checkmark WW \rightarrow lvqq with 35pb-1
 - H→ZZ (2010 data)
 - ✓ ZZ→llvv, llqq with 35pb-1
 - \checkmark ZZ \rightarrow IIII with 40pb-1
- (ii) BSM case
 - MSSM H \rightarrow TT with 35pb-1 (2010 data)
 - $A \rightarrow \mu \mu$ at low mass with 35pb-1 (2010 data)

The Higgs search

Signal production

Signal's x-sec and its uncertainty has been given by :

"Handbook of LHC Higgs Cross sections : 1. Inclusive Observables"

arXiv : 1101.0593 (hep-ph)

The Higgs search at the ATLAS

5

Data-driven BG decomposition (for yy, yj and jj)

- Using "ABCD" method "(i.e. A=B*C/D), # of fake photons in "tight-isolated" region can be checked.
- This method is applied to leading and subleading photons iteratively.

Drell-Yan : Z(ee)-enriched sample is defined by selecting "ey" events.

Z(ee) with one electron faking as a photon is obtained.

By applying fake rate for $e \rightarrow \gamma$, DY contribution to the signal region is extracted.

<u>**H**</u> \rightarrow **yy : Limit extraction with 209pb**⁻¹ (2011 data)

Signal peak shape

BG shape

"Crystal Ball + Gaussian" is used.

Modeled by "exponential".

Limit extraction

<u>H→WW→lvlv with 35pb</u>¹

Main BGs: WW / W+jets / ttbar

In each analysis channel, kinematics cut is optimized.

• Cut variables : $\Delta \phi(II)$, m(II), MT etc.

(depending on signal mass)

· Z veto (for ee, μμ)

Data-driven BG estimation

For each process of main BGs (WW, W+jets, top), its contribution to the sig region is extracted from the control region.

H \rightarrow **WW** \rightarrow **IvIv : Limit extraction with 35pb**⁻¹

Limit w.r.t. SM prediction

^{2.4×}SM (expected) @ 160GeV "Close to SM prediction."

(2010 data)

 $H \rightarrow WW \rightarrow Ivqq$ channel is also analyzed. (35pb-1)

\diamond Evt topology : one lepton (e or μ) + high MET + 2/3 jets

Mass reconstruction using W mass constraint.

BG level is determined by side-band fitting.

Limit setting is performed for high mass region. (mH=200-600GeV)

(H+0/1jet analysis)

H→ZZ→Ilvv and Ilqq with 35pb

Require a lepton pair with M(II) \sim M(Z)

Kinematics cuts

- Ilvv
 - ✓ MET>66(82)GeV for low(high) mass
 - ✓ Require boost Z boson for high mass search.
- Ilqq
 - ✓ MET<50GeV, 70<M(jj)<105GeV
 - ✓ MET<50GeV, 70<M(jj)<105GeV
 ✓ Require boost Z boson for high mass searched bo

 \sim 6.5 \times SM (expected)

@ 320-400GeV

BG estimation

- ZZ/WW/WZ : from MC
- Z, tt, W, QCD : from sideband

Exclusion limit

<bg estimation>

11

after all the selections.

ZZ and Z+jets

Exclusion limit

(arXiv:1106.2748 [hep-ex])

Combined result for SM Higgs Boson search (For 35pb-1)

MSSM H→TT search

MSSM models extend Higgs sector

• 5 bosons : $\phi = (h, H, A)$ and H^{\pm}

governed by m_A and $tan\beta$

Signal production :

- $gg \rightarrow \phi$, $bb \rightarrow bb \phi$: dominant
- Branching fraction: 90% bb, 10% тт

♦ 2 analysis channels are considered.

- Ih channel : $\tau \tau \rightarrow e/\mu$ + τhad
- · II channel : $\tau \tau \rightarrow e \mu 4 v$

Selection

<Ih channel>

1 Lepton(e/µ) + 1 т_{had}

with opposite charge

- MET>20GeV
- Transverse mass : MT<30GeV

<ll channel>

- \cdot 1e + 1 μ with opposite charge
- рт(е)+рт(µ)+МЕТ<120GeV
- ⊿φ(eμ)>2.0rad

A→µµ at low mass with 39pb

NMSSM inspires very low mass scalar A.

- Search the regions [6,9] and [11,12]GeV
- Event selection
 - 2 muons with p_T>4GeV
 - Likelihood ratio selection
- Modeling for M_{µµ} shape
 - Signal A : double-gaussian
 - Y(1/2/3s) : double-gaussian
 - Continuum BGs :

4th Chebyshev polynomial

Exclusion limit

12

m_{uu} [GeV]

Conclusions

Search for the Higgs boson at the ATLAS experiment have been made by using various analysis channels.

(H \rightarrow 2photons, WW, ZZ, TT, $\mu\mu$ etc.)

There is no report for Higgs observation up to now.

The background contributions are well understood by mainly using data-driven method.

Upper limit on x-sec (for SM Higgs boson)

(i) Low mass Higgs (mH<200GeV)

• H→үү (209pb⁻¹): 6.4×SM @mн=120GeV (worlds best)

• H \rightarrow WW \rightarrow IvIv (35pb⁻¹): 2.4×SM @mH=160GeV (close to SM prediction)

(ii) High mass Higgs (m_H>200GeV)

 $\textbf{H}{\rightarrow}\textbf{ZZ}$: The worlds best limit achieved in high mass region.

\diamond Search for BSM case is also performed. (MSSM H \rightarrow tt, A \rightarrow µµ)

<Prospect for the higgs search>

♦ 4fb⁻¹

▶ 10fb⁻¹

We could exclude

down to LEP limit.

• 3 σ observation for mH \gtrsim 120GeV

• 5σ discovery for mн≳135GeV

The Higgs search at the ATLAS

Limit derivation

- profile likelihood method (nuisance parameters for systematic uncertainties)
- power constraint CL_{S+B} (impose $CL_B > 16\%$) i.e. if observed cross section limit smaller than median expected 1 σ , then quote median expected 1 σ
- for comparison also $\ensuremath{\mathsf{CL}}\xspace_{s}$ used at LEP and TEVATRON shown

(i) $H \rightarrow$ two photons with 209pb¹ (2011 data)

H→**yy** : Background estimation

Data-driven BG decomposition (for yy, yj and jj)

Using "ABCD" (i.e. A=B*C/D) method,
 # of fake photons in "tight-isolated"

region can be checked.

 By applying the ABCD method to the leading and the sub-leading photons iteratively, each #evts for γγ, γj and jj in the signal region is extracted.

Drell-Yan

Z(ee) with one electron faking as a photon is obtained

> Apply fake rate for e→γ

BG decomposition result (Data/MC comparison)

H→**yy**: Limit extraction

Signal peak shape

"Crystal Ball + Gaussian" is used.

<Systematics on signal yield>

- Luminosity : ±4.5%
- x-sec: +20/-15%
- Trigger : $\pm 1\%$
- photon-ID : $\pm 5\%$ /photon
- \cdot photon-isolation : \pm 3% /evt
- Energy resolution :

±13% on σ(M_{YY})

BG shape

Modeled by "exponential".

Limit extraction

(ii) $H \rightarrow WW \rightarrow IvIv$ with $35pb^{-1}$ (2010 data)

H→WW→iviv

Event topology :

"di-lepton" + "high missing ET" + "N jets"

- di-lepton : ee/eµ/µµ] Totally, $3 \times 3=9$ channels
- N jets : 0/1/2 jets

are analyzed.

by jet category

and signal mass.)

Backgrounds

WW / W+jets / Z+jets / top (ttbar, single-top)

Event selection

Pre-selection

- 2 leptons with opposite charge
- lepton рт >20/15GeV
- MET>30GeV
- M(II)>15GeV, |M(II)-M(Z)|>10GeV(for ee, μμ)

Topological selection $|(\leftarrow Cut is optimized)|$

- ⊿φ(II)<1.3 or 1.8
- M(II)<50, 65 or 80GeV
- Transverse mass cut: 0.75*Мн < Мт < Мн

H→**WW**→**IvIv : Background estimation**

MT distribution (after all the other cuts than MT selection)

Result for BG estimation (in the analysis for MH=170GeV)				
	0 jet	1 jet	2jet	
Data	3	1	0	
BG	1.7 ± 0.3	1.3 ± 0.5	0.02 ± 0.03	
Higgs	1.3±0.4	0.6 ± 0.2	0.06 ± 0.03	

H→**WW**→**IvIv : Background estimation**

Data-driven background estimation

- Control region(C.R.) for each of main BG processes is defined.
- By using C.R., the contribution from each process to signal region (S.R.) is estimated in a data-driven manner.

(iii) $H \rightarrow ZZ$ (with 2010 data) ($H \rightarrow ZZ \rightarrow IIvv$, Ilqq with 35pb⁻¹ ($H \rightarrow ZZ \rightarrow IIII$ with 40pb⁻¹

$H \rightarrow ZZ \rightarrow IIvv$ and IIqq with 35pb

Pre-selection

- 2 leptons(ee or μμ) with pτ>20GeV
- |M(II)-M(Z)|<15GeV

Additional selection

llvv :

llqq :

- b-jet veto
- MET>66 or 82GeV
- ⊿φ(II)<2.64 or 2.25

Background estimation

• ZZ/WW/WZ : from MC

Others : from sideband

Event topology

• One lepton pair with $M(II) \sim M(Z)$

Ilqq: One jet pair with M(jj)~M(Z)

- MET<50GeV рт,jet>50GeV (for Mн>360GeV)
- ・70<M(jj)<105GeV ・⊿φ(II), ⊿φ(jj)<π/2

(for Mн>360GeV)

<BG uncertainties>

Uncertainty

15%

5%

25%

50%

50%

(iv) $H \rightarrow \tau \tau$ in MSSM with 36pb⁻¹ (2010 data)

MSSM H \rightarrow **TT** \rightarrow **e**/ μ + T_{had}

MSSM models extend Higgs sector 5 bosons : φ = (h, H, A) and H[±]

Signal production

- $gg \rightarrow \phi$, $bb \rightarrow bb \phi$: dominant
- 10-100 times larger cross section than SM
- Branching fraction :
 - ✓ 90% bb, 10% тт --- enhanced

Selection

- 1 Lepton(e/μ) + 1 Thad with opposite charge
- MET>20GeV

• Transverse mass : MT<30GeV
$$\int m_{\rm T} = \sqrt{2p_{\rm T}^{{\rm e}/\mu}E_{\rm T}^{{\rm miss}}(1-{\rm com})}$$

Needs to be checked

with data.

♦ Main BGs

- Z→тт (irreducible)
- W+jets : jet→т fake
- QCD : 1 jet→тlep and

1 jet→Thad fakes

Final discriminant : TT visible mass

MSSM H \rightarrow **TT** \rightarrow **e**/ μ + T_{had} with 36pb

Selection

- 1 Lepton(e/µ) + 1 Thad with opposite charge
- MET>20GeV
- Transverse mass : MT<30GeV

Main BGs

- Z→тт (irreducible)
- W+jets : jet→T fake
- QCD : 1 jet→Tlep and **1** jet→Thad fakes
- Needs to be checked by data.

BG estimation by the same-sign driven method

X SS/OS : Same/Opposite-sign

 Signal : Charge of lepton and т-jet should be opposite sign.

Fake tau events :

#events with OS and SS are

expected to be similar.

of BGs in signal region is

extracted from SS region. (OS \rightarrow SS)

<OS/SS ratio in theory>

• QCD jets : OS=SS

• W+ iets : OS>SS

H→TT→eµ4v with 36pb

Selection

 10^{2}

10

1

100

- 1e + 1µ with opposite charge
- pt(e)+pt(µ)+MET<120GeV</pre>
- **∕**/φ(eµ)>2.0rad

BG estimation

•Z→TT : from MC

√s

150

QCD : "ABCDEFGH method"

Control region defined by lepton-

isolation & charge correlation.

300

Combined result for exclusion limit (lh + ll channels) Limit on x-sec*Br **Exclusion on (m** $_{A}$, tan β) _{5H}× BR(H→ ττ) [pb] 80 10^{3}

33

(v) $A \rightarrow \mu \mu$ at low mass with 35pb¹ (2010 data)

$A \rightarrow \mu \mu$ at low mass

NMSSM inspires very low mass scalar A.

Search in the regions [6,9] and [11,12] G_{ev}^{a}

- **Event selection**
- 2 muons with pT>4GeV
- Likelihood ratio selection

PDF --- determined with data. ✓ Sig : 9-11GeV (Ys & A agree.) ✓ BG : 4.5-5.5, 12.5-14.5GeV

Inputs for likelihood ratio : primary vtx x2/ndf, calo-isolation

Signal & BG modeling for limit derivation

- Continnum BGs: 4th Chebyshev polynomial
- Signal A : double-gaussian

 \checkmark Width and fraction are related to those of Y(1/2/3s).

Systematics on signal eff.			
Source	M _A =6(11.5)GeV		
Luminosity	3.4 (3.4)%		
PYTHIA vs MC@NLO	67 (20)%		
Muon Efficiency	14 (15)%		
Dimuon Trigger	13 (12)%		
Likelihood Method	3 (3) %		
Total	70(28)%		