Electroweak and QCD measurements @ LHCb

2nd International Conference on Particle Physics, Istanbul

Victor Coco

NIKHEF

June 20th-25th, 2011

On behalf of the LHCb collaboration

Introduction

- LHCb experiment is fully instrumented over a unique region of pseudo rapidity at LHC (2 < η < 5).
- Probe large-x high Q^2 , small-x high Q^2 .
- W and Z production measurements.
- Forward region is also interesting for testing particle production in MC models.

- Designed for CP violation studies in B decay and rare decays.
- Single arm spectrometer, 40% of $b\bar{b}$ pairs produce in the acceptance.
- Collision at $\sqrt{s} = 900 GeV$ (~ $0.3nb^{-1}$) in 2009 and $\sqrt{s} = 7 TeV$ (~ $35pb^{-1}$) in 2010.

•

0.5

1/p, (c/GeV)

• Muon ID for μ from W > 98%.

•

W and Z cross section

LHCb-CONF-2011-012

$$\sigma = \frac{N_{cand} - N_{bkg}}{A \times \epsilon_{trigger} \times \epsilon_{tracking} \times \epsilon_{\mu ID} \times \epsilon_{selection} \times \int L}$$

All efficiency evaluated on data $(Z \rightarrow \mu\mu, W \rightarrow \mu\nu)$:

- Trigger on μ with $p_T > 10 GeV/c$, $\epsilon_{trigger} = 86 \pm 1\%, \epsilon_{trigger} = 73 \pm 1\%$
- Tracking efficiencies: $\epsilon_{tracking} = 83 \pm 3\%, \epsilon_{tracking} = 73(78) \pm 3\%$
- μ_{ID} efficiencies: $\epsilon_{\mu ID} = 97 \pm 1\%, \epsilon_{\mu ID} = 98.2 \pm 0.5\%$
- Selection with $\mu p_T > 20 \text{GeV}/c$, $2 < \eta < 4.5$, for Z: 81 $< m_{\mu\mu} < 101 \text{GeV}/c^2$, for W: μ isolation.
- Selection efficiencies: $\epsilon_{selection} = 100\%, \epsilon_{selection} = 55 \pm 1\%$
- Background for Z: QCD, $Z \rightarrow \mu\mu$, b and c semi-leptonic decays, $Z \rightarrow \tau\tau$
- Background for W: QCD, $Z \rightarrow \mu\mu$, $W \rightarrow \tau\nu$, $Z \rightarrow \tau\tau$.

Systematics

Yields:

• $Z \rightarrow \mu \mu$: $N_Z = 883$, $N_{back} = 1.2 \pm 1.2$

• $W \to \mu\nu$: $N_{W^+} = 7624$, $N_{back^+} = 2194 \pm 150$ / $N_{W^-} = 5732$, $N_{back^+} = 1654 \pm 150$. Main source of systematics:

	Z	W+	W-	
Background	0.1	3	5	Uncertainty on shape
Tracking efficiency	1	1	1	Statistics
μ ID	0.7	0.5	0.5	Statistics
Trigger	4	4	4	Statistics
Selection	-	2	2	Statistics
$\int L$	10	10	10	Method

Preliminary cross sections at $\sqrt{s} = 7 TeV$ for μ with $p_T > 20 GeV/c$ and $2 < \eta < 4.5$ (and for Z $81. < m_Z < 101 GeV/c^2$):

$$\sigma_{Z o \mu\mu} = 73 \pm 4(stat\&sys) \pm 7(lumi)pb$$

 $\sigma_{W^+ o \mu^+
u} = 1007 \pm 48(stat\&sys) \pm 101(lumi)pb$
 $\sigma_{W^- o \mu^-
u} = 680 \pm 40(stat\&sys) \pm 68(lumi)pb$

Preliminary measurements are not corrected for QED FSR.

Results

- Measurements are compatible with NLO prediction (MSTW2008NLO)
- For these rapidity, uncertainty of the prediction due to PDF is between 4 and 7%.

W charge assymptry $A_W = \frac{\sigma W^+ - \sigma W^-}{\sigma W^+ + \sigma W^-}$

- Asymmetry changes sign in the forward region.
- In this region, PDF uncertainty on A_W is of the order of 2 – 8% (MSTW2008NLO, 68% C.L.)
- LHCb measurements already constraint PDFs with present analysis.

do*/dnj-do7/dnj do*/dnj+do7/dnj

0.3

-0.2

-0.4

-0.6

LHCb preliminary

MCFM NLO Vs=7 TeV

MSTW2008 PDFs

Production ratio: $\bar{\Lambda}/\Lambda$, $\bar{\Lambda}/K_s^0$

Particle selection

Paper soon submitted to JHEP

- $\bar{\Lambda}/\Lambda$ probe the baryon transport number. $\bar{\Lambda}/K_s^0$ probe the strange baryon suppression.
- Measurements performed at $\sqrt{s} = 900 GeV (0.3 nb^{-1})$ and $\sqrt{s} = 7 TeV (1.8 nb^{-1})$.
- Very loose trigger: one track seen in the VELO or downstream.
- A primary vertex is required.
- Prompt K_s^0 and $\Lambda(\bar{\Lambda})$ decaying to $\pi^+\pi^-$ and $p\pi^-(\bar{p}\pi^+)$.
- Cut on IP combination of the Λ and K_s^0 and daughters, to reduce combinatorial background and non-prompt contribution.

• Measurements are done in 6 bins of p_T (250 $< p_T < 2500 MeV/c$) and 4 bins of rapidity 2 < y < 4.

Production ratio: $\bar{\Lambda}/\Lambda$, $\bar{\Lambda}/K_s^0$ _{Systematics}

- Efficiency of selection prompt Λ and K_s^0 estimated from MC after reweighing of p_T , y distribution to match data.
- Most systematics cancel through the ratio.

	$\bar{\Lambda}/\Lambda$	$ar{\Lambda}/K_s^0$
Material interaction (*)	0.02	0.02
Diffractive event fraction(*)	0.01 - 0.02	0.01 - 0.02
Primary vertex finding (*)	< 0.02	< 0.01
Non prompt fraction (*)	< 0.01	< 0.01
Track finding (*)	negligible	0.01
MC kinematic correction	0.01 - 0.05	< 0.03
Signal extraction	0.001	0.001
Total	0.02 - 0.06	0.02 - 0.03

After corrections, the two magnet polarity sample are in good agreement \rightarrow combined in the results, taking (*) into account.

Baryon transport Number: $\bar{\Lambda}/\Lambda$ Results

- Good agreement with MC at low rapidity.
- Extreme models of baryon transport favoured at high rapidity.

Strange baryon suppression: $\bar{\Lambda}/K_s^0$

• The ratio Λ/K_s^0 , measuring the suppression of strange baryons in hadronisation, is significantly larger than expected.

Baryon transport Number: \bar{p}/p

Proton selection

LHCb-CONF-2010-009

- \bar{p}/p probe the baryon transport number.
- Measurements performed at $\sqrt{s} = 900 \, GeV \, (0.3 n b^{-1})$ and $\sqrt{s} = 7 \, TeV \, (0.2 n b^{-1})$ with loose trigger.
- Prompt protons with p > 5 GeV/c are selected with PID requirements (~ 95% purity on MC, with efficiency ~ 85%).

• Measurements are done in 3 bins of p_T (0.8; 1.2 GeV/c) and 5 bins of rapidity 2 < y < 4.5.

Correction for reconstruction bias and systematics

- Efficiency and purity of the PID evaluated on data using tag and probe method on calibration samples: $\phi \to K^+ K^-$, $K_s \to \pi^+ \pi^-$ and $\Lambda \to \pi p$.
- Cross contamination effect for ID efficiency and misID extracted from calibration sample for each p_T , η bins, magnet polarity and particle/anti particle.
- Correction of particle losses through interaction with material extracted from MC for each p_T , η bins, magnet polarity and particle/anti particle.

Main systematics

	$\sqrt{s} = 900 GeV$	$\sqrt{s} = 7 TeV$
PID contamination	0.02-0.14	0.02-0.08
Magnet polarity	0.001-0.03	0.01-0.03
Beam crossing angle	0.005	0.03

Baryon transport Number: \bar{p}/p

Higher than expected at $\sqrt{s} = 900 \, GeV$. Consistent with $\bar{\Lambda}/\Lambda$

Inclusive ϕ cross section @ $\sqrt{(s)} = 7 TeV$ Selection

LHCb-CONF-2010-014

- $\bullet\,$ Probe strangeness production \to information on fragmentation, tuning of MC models in our pseudorapidity region.
- Measurements performed at $\sqrt{s} = 7 TeV (5.6 nb^{-1})$ with loose trigger.
- Events with 1 primary vertex.
- $\phi \to K^+ K^-$ are selected with at least one K PID requirements (tag), $1. < m_{KK} < 1.045 GeV/c^2$
- ${\, {\circ}\, }$ Resolution dominated by the natural width of the ϕ

Inclusive ϕ cross section @ $\sqrt{(s)} = 7 TeV$

Corrections and systematics

$$\sigma_{pp \to \phi X} = \frac{N_{tag}}{\epsilon_{PID} \times \epsilon_{reco} \times \epsilon_{trigger} \times \epsilon_{PV} \times B(\phi \to KK) \int L}$$

- Number of ϕ candidates is extracted for the tag candidate mass distribution.
- Trigger efficiency is a known prescale.
- PID efficiency is extracted from data, per bins of p_T, y (> 80% in most of the bins).
- Reconstruction efficiency is extracted from MC per bins of *p*_T, *y*.
- $\bullet~$ PV efficiency $\sim 99.3\pm0.3\%.$

Main systematics

	%
Luminosity	10
Tracking efficiency	8
Track Multiplicity	5
PID	1-14
Reconstruction	1-6

Inclusive
$$\phi$$
 cross section $@\sqrt(s) = 7 TeV$
Results

• At $\sqrt{s} = 7 TeV$, for ϕ with $p_T \in [0.8, 5.GeV/c]$ and $y \in [2.44, 4.06]$:

 $\sigma_{pp
ightarrow \phi X} = 1493 \pm 12 (stat) \pm 12 (uncorr.syst) \pm 209 (corr.sys) \mu b$

More strange mesons produced forward than expected from MC models.

Inclusive jet and di-jets production @ $\sqrt{(s)} = 7 TeV$

A preliminary study

- Forward jet production at LHC probe the uncharted low-x high Q^2 region.
- Jets a reconstructed out of charged particles and π^0 .
- k_T with R=0.7.
- No correction for energy yet.
- No acceptance correction.

Work on-going:

- Improvement of input selections under study.
- Study of extraction of JES and efficiencies on going.
- ${\scriptstyle \bullet}$ Update will use anti-kT with R=0.6.

LHCb-CONF-2011-015

- LHCb probe high rapidity region at LHC.
- With the coming 2011 data, sensitivity to constraint PDF from W and Z measurements.
- Valuable results for improving MC models:
 - Baryon number transport is higher than expected.
 - Λ/\tilde{K}_s^0 lower than expected.
 - More strange mesons produced than expected.