Towards a new generation axion helioscope

Igor G Irastorza Universidad de Zaragoza

International Conference on Particle Physics Istambul, Turkey, June 20-25th 2011

Outline

Talk based on JCAP 06 (2011) 013

Outline:

- Axions: motivation, theory, cosmology.
- Solar axions &
 - the axion helioscope concept
- Previous helioscopes & CAST
- Technical prospects for a new helioscope
- Sensitivity prospects
- Conclusions

ournal of Cosmology and Astroparticle Physics

Towards a new generation axion helioscope

I.G. Irastorza,^a F.T. Avignone,^b S. Caspi,^c J.M. Carmona,^a

- T. Dafni,^a M. Davenport,^d A. Dudarev,^d G. Fanourakis,^e
- E. Ferrer-Ribas,^f J. Galán,^{a,f} J.A. García,^a T. Geralis,^e
- I. Giomataris,^f H. Gómez,^a D.H.H. Hoffmann,^g F.J. Iguaz,^f
- K. Jakovčić,^h M. Krčmar,^h B. Lakić,^h G. Luzón,^a M. Pivovaroff,^j
- T. Papaevangelou,^f G. Raffelt,^k J. Redondo,^k A. Rodríguez,^a
- S. Russenschuck,^d J. Ruz,^d I. Shilon,^{d,i} H. Ten Kate,^d A. Tomás,^a
- S. Troitsky,¹ K. van Bibber,^m J.A. Villar,^a J. Vogel,^j L. Walckiers^d and K. Zioutasⁿ

AXION motivation

- **Strong CP problem:** why strong interactions seem not to violate CP?
 - CP violating term in QCD is not forbidden. But neutron electric dipole moment not observed.
- Natural answer if Peccei-Quinn mechanism exist. - New U(1) global symmetry \rightarrow spontaneously broken.

$$\mathcal{L}_{CP} = \theta \frac{\alpha_s}{8\pi} G \tilde{G}$$

 α_s

 8π j

 \mathcal{A}

As a result, new pseudoscalar, neutral and very light particle is predicted, the axion. It couples to the photon in every model.

AXION motivation: Cosmology

- Axions are produced in the early Universe by a number of processes:
 - Axion realignment
 - Decay of axion strings
 - Decay of axion walls
 - In general, Range of axion masses of 10⁻⁶ 10⁻³ eV are of interest for the axion to be the (main component of the) <u>CDM</u>.
 - Thermal production

NON-RELATIVISTIC

(COLD) AXIONS

 In order to have substantial relativistic axion density, the axion mass must be close to 1 eV. (ma > 1.02 eV gives densities too much in excess to be compatible with latest CMB data)
 Hannestad et al, JCAP 0804 (2008) 019 [0803.1585 (astro-ph)]

Solar Axions

 Solar axions produced by photon-toaxion conversion of the solar plasma photons

 Solar axion flux [van Bibber PRD 39 (89)] [CAST JCAP 04(2007)010]

Axion Helioscope principle

Axion helioscope [Sikivie, PRL 51 (87)]

6

Helioscopes

Previous helioscopes:

- First implementation at Brookhaven (just few hours of data) [Lazarus et at. PRL 69 (92)]
- TOKYO Helioscope (SUMICO): 2.3 m long 4 T magnet

Presently running: – CERN Axion Solar Telescope (CAST) ICPP, Istambul, June 2011 Igor G. Irastorza / Universidad de

CAST experiment @ CERN

- Decommissioned LHC test magnet (L=10m, B=9 T)
- Moving platform ±8°V ±40°H (to allow up to 50 days / year of alignment)
- 4 magnet bores to look for X rays
 - 3 X rays detector prototypes being used.
- X ray Focusing System to increase signal/noise ratio.

ICPP, Istambul, June 2011

New Micromegas detectors for CAST

- Since 2008 2 new Micromegas detectors replaced the TPC in the *sunset* side.
 - Better shielding
- At sunrise side. The Micromegas detector substantially upgraded:
 - microbulk, shielding, monitoring, frontal calibration, flow controller,
- In overall → increasingly better backgrounds & sensitivity

Sunset Micromegas

CAST X-ray telescope

CAST innovation of the "helioscope concept"

- Wolter I type grazing incident optics (prototype for ABRIXAS mission)
- From Ø43 mm (magnet bore) → Ø3 mm spot improves signal to background ratio

CAST X-ray telescope

Spot from the telescope on the CCD detector

- Determination of the spot position by calibrations and precise alignment of telescope.
- Counts inside the spot compatible with background level

Towards a new generation axion helioscope

- CAST is established as a reference result in experimental axion physics (*)
- CAST PRL2004 most cited experimental paper in axion physics
- No other technique can realistically improve CAST in a wide mass range.
- Next step in the field → new generation axion helioscope
- CAST has shown the way to improve the helioscope techniqué...

...and low background detectors

ICPP, Istambul, June 2011

Axion Helioscopes FOM

3 elements drive the sensitivity of an axion helioscope

Sensitivity scenarios

Parameter	Unit	CAST-I	NGAH 1	NGAH 2	NGAH 3	NGAH 4
В	Т	9	3	3	4	5
L	m	9.26	12	15	15	20
A	m^2	2×0.0015	1.7	2.6	2.6	4.0
f_M^*		1	100	260	450	1900
b	$\frac{10^{-5}\mathrm{c}}{\mathrm{keV}\mathrm{cm}^{2}\mathrm{s}}$	~ 4	$3 imes 10^{-2}$	10^{-2}	$3 imes 10^{-3}$	10^{-3}
ϵ_d		0.5 - 0.9	0.7	0.7	0.7	0.7
ϵ_o		0.3	0.3	0.3	0.6	0.6
a	cm^2	0.15	3	2	1	1
f_{DO}^*		1	6	14	40	40
ϵ_t		0.12	0.3	0.3	0.5	0.5
t	year	~ 1	3	3	3	3
f_T^*		1	2.7	2.7	3.5	3.5
f*		1	1.6×10^3	9.8×10^3	$6.3 imes 10^4$	2.7×10^5

ICPP, Istambul, June 2011

New magnet

- CAST enjoys one of the best existing magnets than one can "recycle" for axion physics (LHC test magnet)
- Only way to make a step further is to built a new magnet, specially conceived for this.
- Work ongoing, but best option up to know is a toroidal configuration:
 - Much bigger aperture than CAST: ~1 m per bore
 - Relatively Light (no iron yoke)
 - Bores at room temperature (?)

ICPP, Istambul, June 2011

X-ray optics

 During the last four decades, the x-ray astronomy community has devoted billions of dollars to develop reflective x-ray optics

Innovations include:

- Nested designs (so called Wolter telescopes)
- Low-cost substrates
- Highly reflective coatings
- Although NGAH will require fabrication of dedicated optics, it will be crucial to *leverage* as much infrastructure as possible to minimize cost and risks

XMM-Newton telescope with 56 nested shells

ICPP, Istambul, June 2011

One possibility: thermally-formed glass substrates

- NASA is currently building NuSTAR, a hard x-ray telescope
- NuSTAR uses thin glass substrates coated with multilayers to enhance reflectivity up to 80 keV
- The specialized tooling to shape the substrates and assemble the optics will be available after NuSTAR is launched in 2012
- Hardware can be easily configured to make optics with a variety of designs and sizes

ICPP, Istambul, June 2011

An ultralow-b MM for the NGAH

- Goal: at least 10⁻⁷ c/keV/cm²/s, down to 10^{-8} c/keV/cm²/s if possible.
- Work ongoing:
 - Experimental tests with current detectors at CERN, Saclay & Zaragoza
 - Especially: underground setup at Canfranc Lab
 - Simulation works to build up a background model
 - Design a new detector with improvements implemented

R&D low background detectors

How much beyond CAST we can hope for?

Factor 8 to 30 better in $g_{a\gamma}$ (4000 to 10⁶ in signal strength!!)

ICPP, Istambul, June 2011

How much beyond CAST we can hope for?

The cooling of white dwarfts

- Luminosity function (WD's per unit magnitude) altered by axion cooling
- Claim of detection of new cooling mechanism (Isern 2008)
- Axion-electron coupling of ~1x10⁻¹³
 (→ axion masses of 2-5 meV or larger) fits data.

(Isern et al. 2008,2010)

ICPP, Istambul, June 2011

The cooling of white dwarfts

- meV masses seem out of reach of even an improved axion helioscope... BUT
- Axion-electron coupling provides extra axion emission from the Sun...
- Extra emission concentrated at lower energies (~1 keV)

 Such axion could produce a detectable signal in the new axion helioscope

ICPP, Istambul, June 2011

Conclusions

- CAST most powerful axion helioscope to-date. Established as a reference result in axion physics.
- Expertise gathered in magnet, optics, low back detectors
- Towards a new generation axion helioscope: feasibility study in progress.
- First results (JCAP 016) show good prospects to improve CAST 1-1.5 orders of magnitude in $g_{a\gamma\gamma}$.
- In combination with dark matter axion searches (ADMX) a big part of the QCD axion model region could be explored next decade.
- White dwarfts e-coupled axions?, relic axions?, ALPs?... towards an International Axion Observatory
- Looking for more interested groups...