

Recent results from CMS on SUSY searches in leptonic final states

2nd International Conference on Particle Physics, 20-25 June 2011, Istanbul Robert Schöfbeck on behalf of the CMS Collaboration

Overview

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

Robert Schöfbeck

Slide 2

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Robert Schöfbe	ck	ICP	P, 20-25 June 20)11		Slide 3

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Rohert Schöfhe		ICP	P 20-25 June 20			Slide 4

Robert Schöfbeck

ICPP, 20-25 June 2011

Slide 5

CMS

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Robert Schöfbeck			PP, 20-25 June 20	011		Slide 6

multilepton channel

CMS

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
Robert Schöfbe	– ck	ICP	P, 20-25 June 20	011		Slide 7

Slide 7

single lepton: matrix method

▶ pre-selection: one energetic lepton =1 e P_T>20 GeV or μ P_T>15 GeV ≥4 jets, p_T>30 GeV, |η|<2.4</p>

➤ signal selection (D): H_T>650 GeV MET /√H_T > 5.5

CMS

- ➤ matrix (ABCD) method: use nearly uncorrelated variables. Exploits the hadronic event properties H_T = Σ_{jets} p_T vs. S_{MET} = MET /√H_T Small QCD contribution estimated separately
- Calculate Bkg-prediction from Bkg dominated control regions: D_{pred.} = B C / A

Robert Schöfbeck

ICPP, 20-25 June 2011

2nd method: lepton spectrum

Robert Schöfbeck

ICPP, 20-25 June 2011

single lepton: results

signal yields for ABCD method

			-		
μ channel: total SM MC	93.1 ± 1.1	8.7 ± 0.4	37.6 ± 0.7	3.4 ± 0.2	3.5 ± 0.2
μ channel: data	98	4	41	5	1.7 ± 0.9
<i>e</i> channel: total SM MC	76.8 ± 1.5	6.5 ± 0.3	29.5 ± 0.7	2.9 ± 0.2	2.5 ± 0.1
e channel: data	80	4	30	2	1.5 ± 0.8

signal yields for lepton spectrum method

Sample	$\ell = \mu$	$\ell = e$
Predicted SM 1 ℓ	1.7 ± 1.4	1.2 ± 1.0
Predicted SM dilepton	$0.0\substack{+0.8 \\ -0.0}$	$0.0\substack{+0.6\\-0.0}$
Predicted single $ au$	0.29 ± 0.22	$0.32\substack{+0.38 \\ -0.32}$
Predicted QCD background	0.09 ± 0.09	$0.0\substack{+0.16\\-0.0}$
Total predicted SM	2.1 ± 1.5	1.5 ± 1.2
Observed signal region	2	0

- Set limits in cMSSM plane.
- Limits similar to hadronic $α_T$ search in cMSSM (tan β = 3 exclusion plot)
- Observed limit based on 2 observed events in e+µ channel.

Robert Schöfbeck

OSDL: search strategy

Signal selection: P_T(µ,e)>10/20GeV (ee/eµ/µµ)

Z-Veto: $|\mathbf{m}_{||} - \mathbf{m}_{z}| > 20 \text{ GeV}$ 2 jets > 30 GeV $H_T > 300 \text{ GeV}$ MET/ $\sqrt{\text{HT}} > 8.5$

- ttbar (dominant) Matrix method in H_T and S_{MET} (y) pT(II) method (di-lepton spectrum m.) OF subtraction (hadr. triggered)
- QCD (small) estimation

Good Data/MC agreement in control regions!

Robert Schöfbeck

ICPP, 20-25 June 2011

OSDL: results

\triangleright	matrix method:	

(uncorr. variables: H_T and $S_{MET} = y$)

	N _{D,pred} .	N _{D,obs}
MC	1.27 ± 0.05	1.27 ± 0.10
Data	1.30 ± 0.78	1

> pT(II) method:

Exploits the fact that the lepton and neutrino get the same boost in ttbar and W+Jets

Model MET from p_T of di-lep. system

Correct for differences (e.g. polarization)

	predicted	obs.
Data	2.1 ± 2.1 (stat)	1
	±0.6(sys)	

OSDL: results

predicted Upper limit on non-SM event count pT(II) 2.1 ± 2.1 (stat) in signal region is 4 $\pm 0.6(sys)$ $L_{int} = 34 \text{ pb}^{-1}, \sqrt{s} = 7 \text{ TeV}$ CMS 500 m_{1/2} (GeV/c²) = LSP LO Observed Limi 1.3 ± 0.8 (stat) ABCD D0 $\tilde{g}, \tilde{q}, \tan\beta=3, \mu<0, 2.1 \text{ fb}^{-1}$ NLO Observed Limi EP2 χ̃± 400 ± 0.3 (sys) LEP2 \tilde{l}^{\pm} q̃(800)GeV/c² D0 $\chi_{1}^{\pm}, \chi_{2}^{0}$ $\tan\beta = 3, A_0 = 0, \mu > 0$ 1.4 ± 0.8 Average g (800)-GeV/c 300 q̃(650)GeV/c² cross-check: OF subtraction (signal region: MET>150 GeV H_T> 350 GeV) ĝ(650)GeV/c ğ (500) GeV/0 200 predicted 100 channel μμ ee 100 200 300 400 0 m_0 (GeV/c²) 0.4 + 1.0 - 0.40.5 + 1.2 - 0.4OF subtr.

All three methods give consistent estimates of SM background

0

Robert Schöfbeck

observed

0

ICPP, 20-25 June 2011

500

same-sign dilepton search

Robert Schöfbeck

ICPP, 20-25 June 2011

Backgrounds:

Prompt SS leptons (WW/WZ/ZZ) very small: take from MC (<0.1)</p>

charge mis-ID (for electron channel) use the ratio SS/OS for ee events in a Z mass window to estimate charge mis-ID rate. Result from measurement: 0.012 ± 0.006

dominating background: non-prompt leptons from jets (WJets, TTbar, QCD) measure from data!

lepton fakes: tag and probe

Study events with two fakes; uncorrelated cuts: Iso of lepton 1 and 2, MET

- Right: Rellso efficiency as fkt. of MET (reduce W with impact parameter cut)
- > Prediction: 0.18 \pm 0.12(stat.) \pm 0.12(sys.)

Robert Schöfbeck

ICPP, 20-25 June 2011

- The largest source of background for the hadronic τ channels is due to fake τ.
- define loose selection by turning off NN requirement in tau-ID
- > $\epsilon_{T/L} = "probability of a loose tau to become tight"$ $is measured in a multi-jet sample in bins of <math>p_T$ and η
- Sideband used for normalization: All cuts except one τ satisfies only loose requirements
- Reweight the side-band yield by ε_{T/L} to get fake tau prediction
 MC-Closure:
 Channel Observed Prediction

Prediction:

	Simu	lation	Data			
	Only	7 SM	Relaxed selection			
Channel	Observed	Predicted	Observed	Predicted		
ττ	0.08 ± 0.03	0.15 ± 0.15	14	$14.0 \pm 4.3 \pm 2.6$		
еτ	0.35 ± 0.12	$0.30{\pm}0.11$	1	$0.8 {\pm} 0.4 {\pm} 0.1$		
μτ	0.47 ± 0.15	0.49±0.20	2	$2.9{\pm}0.6{\pm}0.4$		

 $0.28 \pm 0.14(\text{stat}) \pm 0.09(\text{sys})$

HEPHY Institut für Hochenergiephysik

- Acceptance model defined wrt. stable generator particles
- H_T : calculated from u,d,c,s,b,g p_T>30 in final state, resolution ~ 20-30%
- MET: calculated from non-interacting particles resolution ~ 10 %

(H_T and MET resolutions depend on H_T)

Lepton efficiencies:

$$\epsilon(x) = \operatorname{par}(1) + \operatorname{par}(2) \cdot \left(\operatorname{erf}\left(\frac{x - x_0}{\operatorname{par}(3)}\right) - 1\right)$$

Isolation corrections:

$$\Delta \varepsilon = -0.10 \frac{< n > -25}{15}$$

where <n> is the avarage number of stable charged particles $|\eta|$ <2.4 p_T>3 GeV

 \rightarrow efficiency model to interface with theory!

$$\begin{array}{c} & & & \\ & & & \\ 0.9 \\ & & & \\ 0.8 \\ & & & \\ 0.7 \\ & & & \\ 0.6 \\ & & & \\ 0.5 \\ & & & \\ 0.6 \\ & & & \\ 0.5 \\ & & & \\ 0.6 \\ & & & \\ 0.5 \\ & & \\ 0.6 \\ & & \\ 0.6 \\ & & \\ 0.6$$

SSDL results

no excess seen!

result are used to set limits good agreement with efficiency model

- Include most of
 - 3L and \geq 4L combinations
 - ≻µµµ,eee,µµe,eeµ
 - ≻µµт,еет,еµт
 - ≽µтт,етт
 - ≻All ≥4L combinations with ≤2 τ
- Low SM backgrounds for multi-lepton channels Reduce backgrounds further by requiring one or more of
 H_T > 200 GeV
 MET > 50 GeV
 Veto m(l⁺l⁻) < 12 GeV
 Veto Z's: 75 < m(l⁺l⁻) < 105 GeV
 - 55 channels considered!

Results for multi leptons

		After L	epton ID Red	quirement		MET > 50	0 GeV	H _T > 20	0 GeV	ML01 S	Signals
	Z +jets	tt	VV +jets	ΣSM	Data	ΣSM	Data	ΣSM	Data	MET > 50	$H_{T} > 200$
Channel						3-lepton chai	nnels				
II (OS)e	1.7	0.1	1.2	4.4 ± 1.5	6	0.1 ± 0.1	0	0.2 ± 0.1	1	121.4	141.5
II (OS)μ	2.83	0.2	1.7	4.7 ± 0.5	6	0.10 ± 0.1	0	0.1 ± 0.1	0	123.6	120.8
II (OS)T	121.5	0.5	0.7	123±16	127	0.4 ± 0.1	0	-	-	80.5	-
II (OS)τ	476	2.7	3.9	484 ± 77	442	-	-	0.6 ± 0.2	1	-	68
II T	0.72	0.5	0.2	1.7 ± 0.7	3	0.4 ± 0.2	2	-	-	18.6	-
ll΄τ	4.7	2.9	0.6	11.2 ± 2.5	10	-	-	0.4 ± 0.1	1	-	12.3
II (SS)I	0.13	0.1	0.0	0.2 ± 0.1	0	0.2 ± 0.1	0	0	0	2.8	2.8
II (SS)T	0.25	0.0	0.1	0.7 ± 0.4	3	0.1 ± 0.1	0	-	-	9.0	-
II(SS)τ	1.4	0.0	0.1	3.0 ± 1.1	3	-	-	0.0 ± 0.1	0	-	6.9
Σ III(T)	127.1	1.4	3.8	135 ± 16	145	1.3 ± 0.2	2	-	-	355.9	_
Σ III (τ)	486.8	6.0	7.5	507 ± 77	467	_	-	1.3 ± 0.3	3	-	349.5
ITT	47.1	0.33	0.1	48±9	30	0.4 ± 0.1	0	-	-	8.0	-
Channel						4-lepton chai	nnels				
1111	0	0	0.2	0.2 ± 0.1	2	0	0	0	0	163.9	149.2
IIIT	0	0	0.1	0.1 ± 0.1	0	0	0	-	-	62.3	-
Πτ	0	0	0.1	0.1 ± 0.1	0	_	-	0	0	-	33.2
IITT	0	0	0	0.0 ± 0.1	0	0	0	-	-	20.6	-
ΙΙττ	3.1	0.1	0.1	3.2 ± 0.7	5	-	-	0	0	-	16.8
Σ IIII (T)	0	0	0.3	0.3 ± 0.1	2	0	0	-	-	246.8	-
Σ IIII (τ)	3.1	0.1	0.4	3.5 ± 0.7	5	_	-	0	0		199.2

ML01: $m_0 = 60 \text{ GeV}, m_{1/2} = 230 \text{ GeV}, A_0 = 0$, $\tan \beta = 3$, $\mu > 0$.

Very good agreement after pre-selection, no signal excess in signal regions(T ... hadronic tau decay with one charged track, T ... including decays with three charged tracks)Robert SchöfbeckICPP, 20-25 June 2011Slide 22

Results for multi leptons

Extend reach beyond Tevatron with 35pb⁻¹.

(All LHC and Tevatron results are given for the other MSSM parameters fixed at tan β = 3, A_0 = 0, μ >0) Charginos with m < 163 GeV excluded, exceeding LEP and D0 Limits

CMS

- CMS preformed a variety of SUSY searches with 35 - 191 pb⁻¹
- Multiple methods for data-driven background estimations have been developed, validated and used for 2010/11 data
- > We have not seen significant evidence for BSM
- > 2011 is going to be *the* year for early SUSY

References

latest public results of CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Search for new physics with opposite-sign di-leptons at the LHC, CMS PAS SUS-10-007, Published by JHEP

Search for new physics with same-sign di-leptons at the LHC, CMS PAS SUS-10-004, Published by JHEP

Search for new physics with single-leptons at the LHC, CMS PAS SUS-10-006

Search for multi-leptons at the LHC, CMS SUS-10-008

Search for Physics Beyond the Standard Model in Z + MET + Jets events at the LHC, CMS PAS-SUS-10-010 , SUS-11-012

Backup

Robert Schöfbeck

ICPP, 20-25 June 2011

Slide 26

Z+Jets+MET search with JZB

ICPP, 20-25 June 2011

JZB: results with 34 pb⁻¹

	predicted	obs.	MC
Data	8 ± 3 (stat) ±1 (peak) ±3.2 (sys)	4	5.5 ± 0.2

CMS

JZB: results with 191 pb⁻¹

CMS

Limits of JZB and 191 pb⁻¹ HEPHY

Table 3: Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\sigma \times BR \times acceptance$) for the LM4 and LM8 scenarios, in the reference region, JZB > 50 GeV, and in the search region, JZB > 100 GeV. The last column contains the predicted ($\sigma \times BR \times acceptance$) at NLO obtained from Monte Carlo simulation.

Scenario	Efficiency [%]	Upper limits [pb]		Prediction [pb]	
_		Observed	Expected		
Reference region					
LM4	$91.9\pm0.7(\text{stat})\pm5.2(\text{syst})$	0.064	$0.090\substack{+0.053\\-0.036}$	0.015	
LM8	$88.5\pm0.9(\text{stat})\pm5.3(\text{syst})$	0.067	$0.087\substack{+0.054\\-0.031}$	0.006	
Search region					
LM4	$90.4\pm0.9(\text{stat})\pm7.4(\text{syst})$	0.040	$0.050\substack{+0.022\\-0.017}$	0.012	
LM8	$85.3 \pm 1.1 (\text{stat}) \pm 7.8 (\text{syst})$	0.043	$0.046\substack{+0.035\\-0.014}$	0.005	

CMS

Background predicitons

Use Tag&Probe Method to measure object selection efficiencies > correct MC to measured efficiency if needed Important Backgrounds:

Z+jets (+single fake) dominating

double vector boson production (VV+jets),

tt +Jets

QCD multijets

Irreducible Background ZW+Jets and ZZ+Jets are taken from MC

Corrected for efficiency measurements

The rest: Z+Jets, W+Jets and QCD are completely Data-Driven.

≻ No MC required

Different Methods used for cross check

(fakeable object method, matrix method in rellso,..)