Muon Neutrino Disappearance and Tau Neutrino Appearance Mayly Sanchez - Iowa State University Physics in Collision 2011 - Vancouver, Canada

Neutrino Oscillations

- The flavor eigenstates are \blacksquare linear combinations of the mass eigenstates.
- There is a non-zero \blacksquare probability of detecting a different neutrino flavor than that produced at the source.

$$
|v_{\alpha}\rangle = \sum_{k=1}^{n} U_{\alpha k} |v_{k}\rangle \quad (\alpha = e, \mu, \tau)
$$

$$
\langle v_{\beta}(t) | v_{\alpha}(0) \rangle = \sum_{k} U_{\beta k}^{*} U_{\alpha k} e^{-iE_{k}t}
$$

• The PMNS mixing matrix can be factorized into 3 sectors:

(23) Sector: atmospheric and accelerator, L/E~500 km/GeV (13) Sector: Reactor+accelerator. See next talk

(12) Sector: Reactor + Solar, L/E~15,000 km/GeV

Neutrino masses and mixing
What is the current experimental picture?

- Two mass scales: 'n
	- **The atmospheric mass scale: Δm2 32**
	- The solar mass scale: $\Delta \mathsf{m}^2_{21}$
- **Large mixing angle for atmospheric neutrino oscillations.**
- **Solar neutrino oscillations are subject** to matter effects. Non maximal mixing angle.
- Mass ordering known for the solar **P** mass scale. Not known for the atmospheric.
- Third mixing angle is small and has \blacksquare not yet been measured.

What can we do with... Accelerator neutrinos (long baseline)

and also atmospheric neutrinos (Super-K)

• The atmospheric mass scale: Δm2 32.

• Large mixing angle for atmospheric neutrino oscillations: θ23.

• Differences between Δm2 32/Δm2 32 _

- The third mixing angle: θ_{13} .
- CP violation: δ_{CP} .

• Mass ordering for the atmospheric oscillations: the sign of $\Delta m^2{}_{32}$. Experiments: MINOS, Super-K, Opera,T2K, NOvA

M. Sanchez - ISU/ANL

νμ disappearance

- In long baseline experiments, we compare a prediction obtained from Near Detector data with a Far Detector measurement.
	- Neutrino oscillations deplete rate and distort the energy spectrum.

L

⇥

νμ disappearance

- In long baseline experiments, we compare a prediction obtained from Near Detector data with a Far Detector measurement.
	- Neutrino oscillations deplete rate and distort the energy spectrum.

L

⇥

MINOS in a nutshell

- Produce a high intensity beam of \blacksquare muon neutrinos at Fermilab.
- **Measure these neutrinos at the** Near Detector and use it to predict the Far Detector spectrum.
- **If neutrinos oscillate we will** observe a distortion in the data at the Far Detector in Soudan.

Main **I**njector **N**eutrino **O**scillation **S**earch

Taking data since 2005!

Producing Neutrinos with NuMI

- Horns are positive pions and \mathbf{B} kaons which decay into neutrinos.
- Ξ. Higher energy anti-neutrinos from very forward negative pions.
- Most of MINOS data is taken \blacksquare in this configuration.

The MINOS detectors

- Functionally identical: **Near and Far detectors**
- Octogonal steel planes (2.54cm thick ~1.44X0). **Magnetized detector.**
- Alternating with planes of scintillator strips (4.12cm wide, Moliere rad ~3.7cm).
	- **Near (ND):** ~ 1kton, 282 steel squashed octagons. Partially instrumented.
	- **Far (FD)**: 5.4 kton, 486 (8m/octagon) fully instrumented planes.

MINOS Event Topologies

νμ CC events in the Near Detector

- The beam spectrum can be tuned by varying relative positions of target and magnetic horns.
- We use v_u CC events in ND to constrain flux using 7 beam configurations.
- NA49 data used to constrain π+/π− and π/K ratios in fits.
- Majority of data is from \blacksquare the low energy beam.
- High energy beam \bullet improves statistics in energy above the oscillation dip.
- Additional exposure in \bullet other beam configurations for commissioning and systematic studies.
- **• Use Near Detector data to predict Far Detector spectrum.**

MINOS νμ disappearance

2451. Observe **1986.** Contained: Expect **2451**. Observe **1986.**

\$A9?@"F)#&AH \$I\$**!!"**

• Oscillations fit well. \$A9?@"F)#&AH\$\$ \$ \$I\$**"!"**

!20#&\$A&()5&#&+(&G

- Pure decoherence disfavored at 8 σ.
- GM3N3\$!),69\$*!"#\$%&*7\$2O%\$CPH;=Q;;C\$R:;;QL\$\$\$#\$43\$S"#,&#\$*!"#\$%&*72ON\$T:H:CU;\$R<===L\$ • Pure decay disfavored at 6σ .

MINOS νμ disappearance

2451. Observe **1986.** Contained: Expect **2451**. Observe **1986.**

2017. Non-contained: Expect 2206. Observe 2017.

- Oscillations fit well. 66% of simulated experiments have worse χ^2 than the data.
- Pure decoherence disfavored at 9 σ (contained only 8 σ).
- Pure decay disfavored at 7 **σ** (contained only 6 **σ**).

M. Sanchez - ISU/ANL

P. Adamson *et al.*, Phys.Rev.Lett. 106 181801 (2011) **¹³**

MINOS νμ disappearance

- Study v_u disappearance as a function of energy.
- Precision measurements of Δ m 2 $_{32}$ and sin 2 (2 θ_{23}).

 $|\Delta m^2 \big|$ = 2.32 $^{+0.12}_{-0.08} \times 10^{-3} \mathrm{eV}^2$ $\sin^2(2\theta)$ > 0.90 (90% C.L.)

• World's best measurement: \sim 5% in Δm^2 ₃₂.

- Contour includes dominant systematic uncertainties:
	- normalization, NC background, shower energy and track energy.

M. Sanchez - ISU/ANL

P. Adamson **¹⁴** *et al.*, Phys.Rev.Lett. 106 181801 (2011)

Super-K in a nutshell

- 50 kton water Cherenkov detector
	- 22.5 kton fiducial volume \blacksquare
	- Inner detector \blacksquare
		- \sim 11,146 50 cm PMTs
	- **B** Outer detector
		- 1,885 20 cm PMTs
	- **Depth of 2700 m.w.e**
		- **EXECOSMIC ray background** $~\sim$ 3Hz
- **EXE** Sensitive to a wide range of energies, down to <5 MeV.
- Multi-purpose detector \blacksquare
	- ***** Atmospheric neutrinos: 10/day Running since 1996!

M. Sanchez - ISU/ANL

R. Wendell - DPF 2011 **¹⁵**

Super-K νμ disappearance

- Large statistics neutrino measurement:
	- **220 kton-year exposure**
- Large number of data sample distributions in zenith angle and lepton momentum.
	- **Sub-GeV, Multi-GeV, Partially** Contained stopping and through going.
- World's best sin²(2 θ_{23}) measurement.

SK Zenith SK1234 (1σ) Δm_{23}^2 = 2.2 ^{+0.15} $_{-0.15}$ $\times 10^{-3}$ eV² $\sin^2 2\theta_{22} > 0.96$ (90% C.L.)

Opera in a nutshell

M. Sanchez - ISU/ANL Taking data since 2008!

- Produce a high intensity E. beam of muon neutrinos at CERN. Distance similar to Fermilab - Soudan.
- If neutrinos oscillate, directly observe resulting tau neutrinos from the dominant oscillation mode.
- **Far detector divided in two** supermodules.
	- **Target composed of lead/** emulsion bricks.
	- **Muon spectrometers** magnetized with 1.5T.

Opera ντ appearance Opera's 1st ν_τ Candidate Event (Spring 2010)

Confirming V_{τ} appearance with 35% of '08-'09 data

Opera ντ appearance

- **Analyzed 92% for data** '08-'09:
	- 4.8×10^{19} POT.
- **Significant improvements in** the analysis and simulation chain.
	- **Including better charm** cross sections and reduction of charm background.

No new tau neutrinos found.

- One tau neutrino observed in the **τ →** *h* channel.
- Observation compatible with expectation of 1.65 signal events and a background of 0.05±0.01.
- Probability of background fluctuation is 5%.
- Significance of observation is 95% (was 98.2% in previous analysis).

M. Sanchez - ISU/ANL

Super-K ντ appearance

Tau neutrinos at Super-K are hard to recognize as it is a complicated event topology where the leading lepton might not be distinguishable.

- Developed a neural net \blacksquare with 80% efficiency.
- **EXEL** Looking for an excess over background which must be oscillation induced.

Super-K ντ appearance

νμ disappearance _

• Last year MINOS observed that the neutrino and anti-neutrino measurements were consistent only at the 2% confidence level.

• This result generated significant interest and generated discussion and publications.

• Possible explanations in literature:

- **CPT and Lorentz Violation** - **Non-Standard Interactions J.S. Diaz and V.A. Kostelecký arXiv:hep-ph/1108.1799 L. Liu, et al. Phys.Lett. B702 (2011) J. Kopp, et al. Phys.Rev. D82:113010 (2010)**

W. Mann, et al. Phys.Rev. D82:113002 (2010)

70% more data has been added. Improved analysis.

Producing Neutrinos with NuMI

23

Producing Anti-neutrinos with NuMI

M. Sanchez - ISU/ANL

24

- Muons from charged current interactions are identified as tracks satisfying a \blacksquare multivariate topological ID based on k-nearest neighbors.
	- The input variables include: track length, mean dE/dx along track, energy \blacksquare fluctuations along track and energy deposition in transverse track profile.
- Muon charge/momentum is analyzed by track curvature, we only accept events \blacksquare with positive reconstructed charge.

Antineutrinos in the Far Detector are selected in the same way as in the Near \blacksquare Detector except for tracks ending near the coil.

- Integrated selection efficiency in Far Detector is 97% with 95% sample purity. \blacksquare
	- For the Near Detector it is 53% integrated efficiency, with 94% sample purity. \blacksquare

- Reconstructed neutrino energy uses new shower energy estimator.
- Near detector data matches the expectation well. We use it to predict the Far Detector spectrum with null oscillations.
- Far Detector: expect with no oscillations **273**. Observe **193.**
- No oscillations disfavored at 7.3 σ .

 $\big|\Delta\overline{\mathbf{m}}_{\text{atm}}^{2}$ $\vert = 2.62^{+0.31}_{-0.28} \times 10^{-3} \text{eV}^2$ **NEW!** $\sin^2(2\bar{\theta}_{23}) > 0.75$ (90% C.L.)

• Comparing to anti-neutrino and neutrino oscillations.

 $\big|\Delta\overline{\rm m}^2_{\rm atm}$ $\vert = 2.62^{+0.31}_{-0.28} \times 10^{-3} \text{eV}^2$

 $\sin^2(2\bar{\theta}_{23}) > 0.75$ (90% C.L.) $\sin^2(2\theta_{23}) > 0.90$ (90% C.L.) $\big|\Delta \rm{m}^2_{atm}$ $\vert = 2.32^{+0.12}_{-0.08} \times 10^{-3} \text{eV}^2$

World's best measurement in Δ m͡ 2 ₃₂. Anti-neutrino oscillation parameters consistent with neutrino parameters with $p = 42\%$.

More anti-neutrino $sin^2(2\overline{\theta})$ $\begin{matrix} \overline{} \\ \overline{} \\ \overline{} \end{matrix}$ anti-neutrino $\begin{matrix} 1 \\ 2\overline{\theta} \end{matrix}$ sin²(2 $\overline{\theta}$)

M. Sanchez - ISU/ANL

A. Sousa - Fermilab W&C **³⁰**

***** World's best measurement in Δ m͡ 2 ₃₂. Anti-neutrino oscillation parameters consistent with neutrino parameters with $p = 42\%$.

More anti-neutrino \blacksquare running is under way.

M. Sanchez - ISU/ANL

Super-K \overline{v}_u disappearance

- Atmospheric data carries both neutrinos and anti-neutrinos.
- Super-K cannot distinguish on an event by event basis neutrinos from anti-neutrinos.

However an indirect measurement is possible:

- Cross-sections differ by a factor of ~2 to 3. \blacksquare
- Neutrino/anti-neutrino flux ratio is energy \blacksquare dependent.

 $p + N_{air} \rightarrow \pi^+ + ...$ $\mu^+ + \nu_\mu$ $e^{+} + v_{e} + v_{\mu}$

- Distributions of out-going products can differ.
	- Eg. Charged pion absorption affects the number of observed decay electrons.

Super-K \bar{v}_μ disappearance

- Because Super-K observes \blacksquare maximal oscillations for the atmospheric neutrino/antineutrino mix, it strongly constrains the level of antineutrinos allowed.
- **Fitting the composite** distributions and permitting the neutrinos and antineutrinos to oscillate separately, it explores the combined parameter space.

Off-axis νμ beam neutrinos

)

Next generation of long baseline experiments focuses on electron neutrino appearance searches.

To reduce neutral current contamination from interactions with high energy neutrinos, the detectors can be placed off-axis.

The peak is tuned to the first oscillation maximum.

For muon neutrino disappearance measurement, this provides a perfect canvas to observe the oscillation pattern.

T2K in a nutshell

295km

- **Build a high intensity off**axis beam of muon neutrinos at JPARC (2.5º away from SuperK).
- **B** Use existing large Water Cherenkov detector SuperK
- **Build a near detector** complex to understand beam, cross-sections, etc.
- **If neutrinos oscillate,** electron neutrinos are observed at the Far Detector at Kamioka.

long baseline 2nd generation

High intensity beam from Japan from Japan From Japan From Japan J

T2K Status

T2K νμ disappearance

- Selection for muon neutrinos:
	- 1 single-ring mu-like (33 evt). \blacksquare
	- Less than 2 decay electrons. \mathbf{u}
	- Reconstructed muon \blacksquare momentum larger than 200 MeV.
- Total of **31 events** pass all selections.

T2K νμ disappearance

- No oscillation hypothesis excluded at 4.5 σ from event count alone.
- Systematics coming from Far and Near detectors efficiencies, cross sections and beam flux simulations are ~15%.
- Two analyses where one fits for systematic errors.

C. Giganti - EPS 2011 **³⁸**

NOvA in a nutshell

- **BUSE** existing high intensity beam of muon neutrinos at Fermilab.
- Construct a totally active liquid scintillator detector off the main axis of the beam.
	- Detector is 14 mrad offaxis.
	- **ELOCATION reduces** background for the search.
- **If neutrinos oscillate, electron** neutrinos are observed at the Far Detector in Ash River, 810 km away.

← long baseline → 2nd generation

NOvA status

- Far Detector site construction \blacksquare is now complete.
- **DEDUAL** Upgrade NuMI beam from 320 kW to 700kW starting March 2012 (shutdown).
- **Assembly of Far Detector to** start January 2012, expect 50% operational by end of shutdown. Full Far Detector operational early 2014.
- **Near Detector cavern** excavation during shutdown.
- Currently running Near E. Detector prototype on the surface.

NOvA νμ disappearance

NOvA's narrow band beam centered at the peak of the oscillation, allows for a few % measurement in Δ m 2 ₃₂ and sin 2 2 θ ₂₃.

Improvement of \mathbf{u} one order of magnitude in $sin^22\theta_{23}$.

If combined with Double Chooz/Daya Bay it can break the ambiguity in θ_{23} .

N OvA \bar{v}_μ disappearance .

- Left: $\mathsf{v}_\mathsf{\mu}\text{-}\mathsf{CC}$ and $\overline{\mathsf{v}}_\mathsf{\mu}\text{-}\mathsf{CC}$ spectra before and after oscillations. _
- **Right: Zoom of the** oscillated v_μ -CC and \bar{v}_μ -CC spectra. $\frac{1}{2}$
- $\bm{\mathsf{v}}_\bm{\mathsf{\mu}}$ oscillations use ($\bm{\Delta}$ m², $\sin^2 2\theta$) = (2.35 10⁻³ meV², 1.00)
- ι .ου,
 $\overline{\mathsf{v}}_{\mathsf{\mu}}$ os<u>c</u>illations use (Δm͡², $\sin^2 2\theta$) = (3.36 10⁻³ meV², 0.86)
- Bottom: sensitivity 6 years \blacksquare run, 3+3 neutrinos + antineutrinos.

M. Sanchez - ISU/ANL Sensitivity to be updated with new MINOS results M. Messier - INFO 2011 **⁴²**

Muon Neutrino Summary

- Consistent picture in the muon-tau neutrino sector from all neutrino data.
- All evidence points to tau neutrino appearance.

Muon Anti-Neutrino Summary

Muon anti-neutrino sector is converging with the neutrino sector.

Final thoughts

- Uncertainties and degrees of freedom in the muon-tau sector of neutrinos are quickly narrowing. Thanks to both long baseline and atmospheric neutrino experiments.
	- Dominant mode of oscillation from muon neutrinos is demonstrated to be to tau neutrinos: one event observed directly in Opera and many more indirectly by SuperK.
	- The anti-neutrinos parameter space is aggressively being explored by MINOS and SuperK.
- Off-axis experiments are well under way to making very precise measurements in this sector. Look for future results from T2K and NOvA.

Let's keep looking... Thank you!

Backup

Predicting the FD background

- **Use Near Detector data to predict Far Detector spectrum.**
- We expect the Far Detector spectrum to be similar to 1/ R² scaled Near Detector spectrum, but not identical.

- **Neutrino energy depends on angle with respect to the** original pion direction and parent energy
	- **•** higher energy pions decay further along the decay pipe
	- *** angular distributions different between Near and Far:** line versus point source.

Predicting the FD background

- **Predict the event rate at each energy bin by** correcting the expected Monte Carlo rate using either a beam matrix (CC analyses) or Far to Near spectrum ratio (Nue/NC) for Far Detector prediction of events.
- **The Monte Carlo in each case provides necessary** corrections due to energy smearing and acceptance.

• MINOS additionally measures oscillation using the 7% antineutrino of the neutrino beam. Peaked at higher energies.

MINOS \overline{v} μ disappearance Future sensitivity

New data at anti- v_{μ} best fit New data at v_{μ} best fit

