W/Z and Diboson Properties

Alex Melnitchouk
University of Mississippi
on behalf of ATLAS, CDF, CMS, DØ, LHCb collaborations

- Previous speaker covered production of W,Z and dibosons
- Lets take another look at the overall picture as a way of introducing discussion of properties

• Couplings between electroweak gauge bosons

Wy Zy WW WZ ZZ

• Couplings between electroweak gauge bosons

Wy Zy WW WZ ZZ

- Couplings between Z boson and fermions
- Asymmetries induced by couplings
- Angular coefficients

Z

Weak mixing angle

Couplings between electroweak gauge bosons

Wy Zy WW WZ ZZ

- Couplings between Z boson and fermions
- Asymmetries induced by couplings
- Angular coefficients

Weak mixing angle

Z

- Charge asymmetries
- W polarization

- W mass
- W width

CDF and **DØ Detectors**

- CDF and DØ are multi-purpose detectors that include
 - tracking detectors in high magnetic field
 - electromagnetic and hadronic calorimeters
 - muon systems
- Comparative advantages and implications
 - CDF has larger tracking volume
 - ⇒ better muon resolution
 - ⇒ muons used for W mass measurement,
 - DØ muon system has wider rapidity coverage
 - ⇒ muon charge asymmetry measured over a larger rapidity range
 - \Rightarrow constraining PDFs at smaller x

Typical Selections and Backgrounds

- Typical event selections include
 - one or more high p_T isolated leptons*
 - large missing transverse energy in case of W

*electrons or muons

- Main backgrounds
 - electroweak processes other than the process of interest
 - ✓ e.g. $Z\rightarrow$ ee can be background to $W\rightarrow$ ev
 - QCD processes in which a quark or a gluon jet is mis-identified for an isolated lepton
 - Combination of the two
 - ✓ e.g. Z+jets can be background to WZ

Charged Triple Gauge Couplings (TGCs)

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = ig_1^V (W_{\mu\nu}^\dagger W^\mu V^\nu - W_\mu^\dagger V_\nu W^{\mu\nu})$$

$$+ i\kappa_V W_\mu^\dagger W_\nu V^{\mu\nu} + \frac{i\lambda_V}{M_W^2} W_{\lambda\mu}^\dagger W^\mu_{\ \nu} V^{\nu\lambda}$$

- + C and P conservation
- \Rightarrow 5 parameters

$$g_1^Z$$
, K_{γ} , K_Z , λ_{γ} , λ_Z

$$Q_{W} = -\frac{e}{M_{W}^{2}} (1 + \Delta \kappa_{\gamma} - \lambda_{\gamma})$$

$$q_{W} = -\frac{e}{M_{W}^{2}} (2 + \Delta \kappa_{\gamma} + \lambda_{\gamma})$$

to preserve unitarity:

$$\alpha(\hat{s}) = \frac{\alpha_0}{(1 + \hat{s}/\Lambda^2)^2}$$

SM constraints: $\kappa_v = g_1^z = \kappa_z = 1$ and $\lambda_v = \lambda_z = 0$

BSM searches use two reduced parameter sets:

$$SU(2) \times U(1) : \Delta \kappa_z = \Delta g_1^z - \Delta \kappa_y \tan^2 \theta_w$$
 and $\lambda_y = \lambda_z$

Related to tree-level unitarity constraints: 3 parameters

 $HISZ: \Delta \kappa_z = \Delta g_1^Z (\cos^2 \theta_W - \sin^2 \theta_W)$

Equal coupling between SU(2)xU(1) and Higgs fields: 2 parameters

WZ

most stringent limits

CDF Results at 7.1fb⁻¹

	λ^Z	Δg_1^Z	$\Delta \kappa^Z$
1.5TeV	-0.08 - 0.10	-0.09 - 0.22	-0.42 - 0.99
$2.0 { m TeV}$	-0.09 - 0.11	-0.08 - 0.20	-0.39 - 0.90

$\mathbf{W}\gamma$

Neutral TGCs

$$\mathcal{L}_{Z\gamma V} = -ie \left[\left(h_1^V F^{\mu\nu} + h_3^V \widetilde{F}^{\mu\nu} \right) Z_{\mu} \frac{\left(\Box + m_V^2 \right)}{m_Z^2} V_{\nu} \right]$$
 CP conserving $h_{3,4}^{V}$

$$+\left(h_2^{V}F^{\mu\nu}+h_4^{V}\widetilde{F}^{\mu\nu}\right)Z^{\alpha}\frac{\left(\Box+m_{V}^{2}\right)}{m_{Z}^{4}}\partial_{\alpha}\partial_{\mu}V_{\nu}$$

$$V=Z\ or\ \gamma$$

$$V = Z or \gamma$$

$$\mathcal{L}_{ZZV}^{=} - \frac{e}{M_{\pi}^{2}} [f_{4}^{V}(\partial_{\mu}V^{\mu\beta})Z_{\alpha}(\partial^{\alpha}Z_{\beta}) + f_{5}^{V}(\partial^{\sigma}V_{\sigma\mu})\tilde{Z}^{\mu\beta}Z_{\beta}] \qquad CP \text{ violating } f_{4}^{V}$$

$$CP \text{ conserving } f_{5}^{V}$$

ZZ

Lowest diboson cross-section; 12 candidate events

Zγ

PRL 107, 051802 (2011)

Couplings between electroweak gauge bosons

Wy Zy WW WZ ZZ

- Couplings between Z boson and fermions
- Asymmetries induced by couplings
- Angular coefficients
- Weak mixing angle

Z

- Charge asymmetries
- W polarization

- W mass
- W width

$$g_V^f = I_3^f - 2q_f \cdot \sin^2 \theta_W$$

$$g_A^f = I_3^f,$$

Measure effective weak mixing angle

$$g_V^f = I_3^f - 2q_f \cdot \sin^2 \theta_W$$

$$g_A^f = I_3^f,$$

Measure effective weak mixing angle

$$g_V^f = I_3^f - 2q_f \cdot \sin^2 \theta_W$$
$$g_A^f = I_3^f$$

Measure effective weak mixing angle and couplings to u and d quarks

• To leading order LHC and Tevatron measure asymmetry in the same (but reversed) process as LEP and SLC

• Investigation of the two largest deviations in the SM fit

A_{FB} Distributions from DØ and CMS

Couplings between Z and u,d quarks (DØ)

• Fit A_{FR} templates of the Z-to-light quark (u,d) couplings

	g ^u _A	g ^u _V	g ^d _A	g ^d _V
D0 (5.0 fb ⁻¹)	0.502 ± 0.040	0.208 ± 0.014	-0.495 ± 0.037	-0.379 ± 0.027
SM	0.501	0.192	-0.502	-0.347

• Most precise measurement to date!

Effective Weak Mixing Angle

CMS 234pb⁻¹ result $\sin^2 \theta_{\rm eff} = 0.2287 \pm 0.0020 ({\rm stat.}) \pm 0.0025 ({\rm syst.})$ multivariate analysis of dilepton mass, rapidity, CMS-EWK-11-005 and decay angle effectively increases data sample $\times 2$

Angular Coefficients (CDF)

• Study angular coefficients as a function of $P_T(Z)$

$$\frac{d\sigma}{d\cos\theta} \propto \left(1 + \cos^2\theta\right) + \frac{1}{2}A_0\left(1 - 3\cos^2\theta\right) + A_4\cos\theta$$

$$\frac{d\sigma}{d\varphi} \propto 1 + \frac{3\pi A_3}{16} \cos\varphi + \frac{A_2}{4} \cos2\varphi$$

- probe production mechanisms
- establish contributions from two processes
- verify vector-like nature of gluon
- extract effective weak mixing angle(A_4)27

Angular Coefficients (CDF)

• QCD predicts $A_0 = A_2$ at α_s for both production processes for gluon spin 1

- Measured A_0 - A_2 is consistent with zero in each PT(Z) bin
 - this is indirect measurement of gluon spin $(A_0=A_2)$ is badly broken for spin 0

Angular Coefficients (CDF)

- Dependence of A_0 and A_2 on $P_T(Z)$ is different for the two processes
 - dotted green and gray lines above
- Relative contribution of two production processes is established

Couplings between electroweak gauge bosons

Wy Zy WW WZ ZZ

- Couplings between Z boson and fermions
- Asymmetries induced by couplings
- Angular coefficients
- Weak mixing angle

Z

- W polarization
- Charge asymmetries

- W mass
- W width

W Polarization (CMS)

- Determine W bosons polarization fractions (f_L, f_R, f_0)
- Decays to electrons (~5k events) and muon (~8k events)

$$\frac{dN}{d\Omega} \propto (1 + \cos^2 \theta^*) + \frac{1}{2} A_0 (1 - 3\cos^2 \theta^*) + A_1 \sin 2\theta^* \cos \phi^* + \frac{1}{2} A_2 \sin^2 \theta^* \cos 2\phi^* + A_3 \sin \theta^* \cos \phi^* + A_4 \cos \theta^*,$$

$$A_0 \propto f_0 \text{ and } A_4 \propto \pm (f_L - f_R)$$

- Ambiguity in $\cos\theta^*$ determination due to missing neutrino p_Z
- Construct variable correlated with $\cos \theta^*$

$$L_p = \frac{\vec{p}_T(\ell) \cdot \vec{p}_T(W)}{|\vec{p}_T(W)|^2}.$$

• Measure f_0 and f_0 using binned maximum likelihood fit

W Polarization (CMS)

W Polarization (CMS)

• First observation that high P_T W bosons in pp collisions are predominantly left-handed, as predicted in the Standard Model

CMS-EWK-10-014

Combined: $(f_L - f_R)^-$	0.226 ± 0.031 (stat.) ± 0.050 (syst.)		
Combined: f_0^-	$0.162 \pm 0.078 \text{ (stat.) } \pm 0.136 \text{ (syst.)}$		
Correlation	0.304 (stat.), -0.326 (stat. + syst.)		
Combined: $(f_L - f_R)^+$	$0.300 \pm 0.031 (\mathrm{stat.}) \pm 0.034 (\mathrm{syst.})$		
Combined: f_0^+	0.192 ± 0.075 (stat.) ± 0.089 (syst.)		
Correlation	-0.660 (stat.), -0.121 (stat. + syst.)		

W Production Asymmetry

Both at the Tevatron and the LHCW bosons are produced via

$$u\bar{d} \rightarrow W^+$$

$$d\overline{u} \rightarrow W^-$$

• Tevatron: valence quark from proton and valence anti-quark from anti-proton

- LHC: a valence quark from proton and a sea quark from proton
- W production asymmetry is governed by the PDFs

 ⇒ constrain the PDFs with asymmetry measurements

W Production Asymmetry at <u>Tevatron</u>

- Produced with valence quarks
- Total N(W+) = N(W-)
- Asymmetry
 as a function of W boson rapidity

$$A(y_W) = \frac{\frac{d\sigma(W^+)}{dy_W} - \frac{d\sigma(W^-)}{dy_W}}{\frac{d\sigma(W^+)}{dy_W} + \frac{d\sigma(W^-)}{dy_W}}$$

$$\simeq \frac{u(x_1)/d(x_1) - u(x_2)/d(x_2)}{u(x_1)/d(x_1) + u(x_2)/d(x_2)}_{35}$$

W Production Asymmetry at <u>LHC</u>

 W bosons are produced with valence quarks and see quarks

• $N(u_v) > N(d_v)$ $\Rightarrow Total N(W+) > N(W-)$

The inclusive ratio of cross sections for W+ and W- bosons production was measured by CMS to be 1.43 ± 0.05 CMS-EWK-10-006

Lepton Charge Asymmetry

W rapidity cannot be reconstructed on event-by-event basis due to non-measurable longitudinal neutrino momentum

W charge asymmetry

$$A(y_W) = \frac{d\sigma(W^+)/dy_W - d\sigma(W^-)/dy_W}{d\sigma(W^+)/dy_W + d\sigma(W^-)/dy_W}$$
$$y_W = \frac{1}{2} \ln\left(\frac{E + p_z}{E - p_z}\right)$$

lepton charge asymmetry

$$A(y_W) = \frac{d\sigma(W^+)/dy_W - d\sigma(W^-)/dy_W}{d\sigma(W^+)/dy_W + d\sigma(W^-)/dy_W} \qquad A(\eta_l) = \frac{d\sigma_+/d\eta_l - d\sigma_-/d\eta_l}{d\sigma_+/d\eta_l + d\sigma_-/d\eta_l} \sim \frac{d(x)}{u(x)} = A(y_W) \otimes (V-A)$$

$$y_W = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \qquad x_{u,d} = \frac{M_W}{\sqrt{s}} e^{\pm y_W}$$

37

E.L. Berger, F. Halzen, C.S. Kim and S. Willenbrock; Phys. Rev. D40 (1989) 83

Lepton Asymmetry from LHCb

$$x_1 = M_W e^y / \sqrt{s}, x_2 = M_W e^{-y} / \sqrt{s}.$$

LHCb-CONF-2011-039v2

Lepton Charge Asymmetry at LHC

ATLAS-CONF-2011-129 LHCb-CONF-2011-039 CMS-EWK-10-006 (arXiv:1103.3407)

W Charge Asymmetry at Tevatron

DØ: lepton charge asymmetry

Muons: higher statistics

CDF: direct determination of y_W

W mass constraint \rightarrow neutrino momentum with weight probability assigned (decay structure; $d\sigma_W/dy$)

Uncertainties smaller than PDF one.

<u>Still statistics driven</u> PRL 102, 181801 (2009)

40

M(W) Motivation

• W boson mass is an important Standard Model parameter related to G_F , α_{EM} , and M_z via

$$\mathbf{M_{\mathrm{W}}}^{2} = \frac{\pi \alpha_{\mathrm{EM}}(0)}{\sqrt{2} G_{\mathrm{F}} (1 - \mathbf{M_{\mathrm{W}}}^{2} / \mathbf{M_{\mathrm{Z}}}^{2}) (1 - \Delta r)}$$

• Δr term represents (large!) higher-order corrections to M_W

$$\Delta \mathbf{r} = \frac{\alpha_{\rm EM}(0 \to M_{\rm Z})}{\text{Running of } \alpha_{\rm EM}} + \text{Radiative Corrections}$$

$$\frac{t}{W} \frac{\delta_{t} \propto G_{F} M_{top}^{2}}{W} + \frac{H}{Z/W} \frac{\delta_{H} \propto \ln \frac{M_{Higgs}}{M_{W}}}{Z/W} \frac{1}{Z/W} \frac{M_{Higgs}}{Z/W}$$

Constraining Standard Model

- Since M_W , M_{top} , and M_{Higgs} are all related via radiative corrections, we can constrain M_{Higgs} with precision measurements of M_W and M_{top}
- Measurements of M_W and M_{top} overlaid with theory predictions for the Higgs boson

Higgs limit from EW fits

W Mass Fits: $P_T(e)$, $M_T(W)$

Selected distributions of W Mass observables

Largest systematic uncertainties are from lepton energy scale

DØ 1fb⁻¹ W Mass Result

 80.413 ± 0.034 (stat.) ± 0.034 (syst.) GeV

 80.413 ± 0.048 GeV

W Boson Width at Tevatron

PRL 103 231802(2009)

M₊ (GeV)

 $DØ \Gamma_W = 2.028 \pm 0.072 \text{ GeV}$

CDF $\Gamma_{\text{W}} = 2.032 \pm 0.073 \text{ GeV} (350 \text{ pb}^{-1})$ PRL 100 071801 (2008)

Standard Model Tevatron LEP

$$\Gamma_{\text{W}} = 2.093 \pm 0.002 \text{ GeV}$$
 $\Gamma_{\text{W}} = 2.046 \pm 0.049 \text{ GeV}$
 $\Gamma_{\text{W}} = 2.196 \pm 0.083 \text{ GeV}$

M(W) Prospects with all Tevatron Data

- Electroweak fits favor light Higgs
- Currently
 - most probable Higgs mass value = 92 GeV
 - excluded above 161GeV @95% CL
- Under the following example scenario*

 $\Delta M_{W}: 23 \text{ MeV} \rightarrow 15 \text{ MeV}$ central values (M_{W}, M_{top}) do not move $\Delta M_{top}: 1 \text{ GeV}$

- Higgs:
 - most probable value = 71 GeV
 - excluded above 117GeV @95% CL_
 (114.4 from current direct searches)

Higgs limit from EW fits projection today heary uncertaint 5 -0.02750±0.00033 nol. low Q2 data ATLAS, CMS exclud@d Excluded 300 m_H [GeV]

*Pete Renton, ICHEP2008

can be achieved at the Tevatron with the full dataset !!!

Summary

- Lots of interesting measurements of W/Z and diboson properties
 - couplings between electroweak gauge bosons
 - couplings between Z and fermions
 - forward backward asymmetry in Z decays
 - weak mixing angle
 - W boson and lepton charge asymmetries
 - W boson mass, width, and polarization
 - probes of production mechanisms and constraints on the PDFs
- Two-fold goal
 - precise knowledge of Standard Model parameters
 - indirect search for new physics
- More data are being analyzed
- Expecting significant improvements in precision soon
- Thank you for your attention