Bottomonium and Exotic Meson Spectroscopy

Stephen Sekula *with thanks to the BaBar and BELLE Collaborations*

Presented at Physics in Collision 2011 Vancouver, British Columbia, Canada

Programme

- The bottomonium spectrum
 - opportunities for discovery
- The B-factories
- Recent measurements
 - "Useful History" the $\eta_{\rm b}$
 - Radiative transitions from the Y(3S) and Y(2S)
 - The h_{b} saga and exotic bottomonium
- Conclusions and Outlook

The Bottomonium Spectrum

Spectrum: circa 2007

Theoretical Predictions - $\eta_{\rm b}$

The bottomonium ground state: $\eta_{\rm b}$

- The Y(1S) mass is well-known experimentally: $m_{Y(1S)} = 9460.30 \pm 0.26 \text{ MeV/c}^2$ (average from PDG 2010)
- QCD calculations predict the mass splitting between the η_b and the Y(1S) using potential models, lattice QCD, etc.
 these predictions ranged between 36-100 MeV/c²
- Experimentally favored production and decay mode:
 - $Y(nS) \rightarrow \gamma \eta_b, \eta_b \rightarrow hadrons (where n = 1, 2, 3)$
 - Branching fraction for this decay anticipated to be between 10⁻⁴-10⁻³... this implies needing *many millions* of Y(nS) mesons in order to see a signal on top of multi-hadronic backgrounds.

Theoretical Predictions – P-wave States

The P-wave spin-singlet: h_b

- The partner of the P-wave $\chi_{bJ}(1P)$ states (J=0, 1, 2)
- Its mass is estimated from the spin-weighted center of gravity of the χ_{bJ}(1P) states Stubbe & Martin, PLB 271 208 (1991)
 m_{bb} = 9899.87 ± 0.27 MeV/c² (predicted)
- Experimentally favored discovery modes (n=1,2,3):
 - $Y(nS) \rightarrow \pi^0 h_b, h_b \rightarrow \gamma \eta_b, BF \sim (0.001) \times (0.5)$
 - $Y(nS) \rightarrow \pi^+\pi^- h_b, h_b \rightarrow hadrons, BF \sim 10^{-4}$

The P-wave spin-triplet: $\chi_{hJ}(nP)$

• Experimental measurements of radiative transitions to and from $\chi_{bJ}(nP)$ states effective potential models for heavy guarks Stephen Sekula - SMU

The B-Factories

Stephen Sekula - SMU

Stephen Sekula - SMU

Integrated luminosity of B factories

- > 1 ab⁻¹ On resonance: Y(5S): 121 fb⁻¹ Y(4S): 711 fb⁻¹ Y(3S): 3 fb⁻¹ Y(2S): 25 fb⁻¹ Y(1S): 6 fb⁻¹ Off reson./scan: ~ 100 fb⁻¹
- ~ 550 fb^{-1} On resonance: $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ Off resonance: ~ 54 fb^{-1}
- Multi-purpose detectors with large solid-angle coverage, excellent momentum and energy resolution and particle identification systems
- Colliders operated routinely above design specifications and ran at various center-ofmass (CM) energies
 - Data collected at both facilities for nearly a decade 10

Experimental Results

$\eta_{\rm b}$ – archetypal search strategy

Search for monochromatic photon "recoiling" against $\eta_{\rm b}$

- fit energy spectrum for signal/background(s)
- this search is a good example of how all other searches are conducted; what typically differs is the particle(s) "tagging" the transition

An illustrative η_{h} simulation event . . .

Signal photon required to be reconstructed with high quality, be well within the calorimeter acceptance, and be inconsistent with originating from a π^0

jamma

pi-

η_b expected to decay into
 many hadrons (through two gluons), and have
 uniform distribution of
 final state particles

gamm

aamma

aamma

Mass: Hyperfine Splitting: $E_{\gamma} = 921.2^{+2.1}_{-2.8} \pm 2.4 \text{ MeV}$ 9388.9^{+2.3}_{-3.1} $\pm 2.7 \text{ MeV}/c^2$ 71.4^{+2.3}_{-3.1} $\pm 2.7 \text{ MeV}/c^2$

Most consistent with lattice QCD predictions of the η_b properties

Further Study of Radiative Transitions

- Bottomonium has a rich radiative transition structure
 - energy resolution limited by calorimeter
 - difficult to resolve nearby transitions, e.g. $\chi_{bJ}(2P) \rightarrow \gamma Y(1S)$
- Transition rates a generally well-predicted
 - test the predictions with direct measurements
 - improve on existing measurements where possible
 - look for $\eta_b(1S)$ and $\eta_b(2S)$ using an independent technique
- Method: use converted photons $(\gamma \rightarrow e^+ e^-)$

Events are selected where . . .

- the reconstructed particle multiplicity and distribution is consistent with a multi-hadronic event
- there is a good photon conversion candidate, based on fit χ^2 , mass, and the conversion vertex radius

The data is subdivided according to CM photon energy (E*)

- regions defined based on expected transition content
- Y(3S) events: $E_{\gamma}^* = [180,300], [300,600], and [600,1100] MeV$
- Y(2S) events: $E_{\gamma}^{*} = [300, 800]$ MeV

Y(3S): $E_{\gamma}^{*} = [180, 300]$ MeV

This region contains expected transitions from $\chi_{bJ}(2P) \rightarrow \gamma Y(2S)$ and six transitions from D-wave bottomonium states, $Y(1D_J) \rightarrow \gamma \chi_{bJ}(1P)$

Stephen Sekula - SMU

$Y(3S): E_{\gamma}^{*} = [300,600] MeV$

Complicated region with many possible transitions. Some of the highlights are: $Y(3S) \rightarrow \gamma \chi_{bJ}(1P)$ overlap with subsequent $\chi_{bJ}(1P) \rightarrow Y(1S)$ transitions; $h_{b}(1P) \rightarrow \gamma \eta_{b}(1S)$ could appear here.

Transition	E_{γ}^{*}	Yield	ϵ	Derived Branching F	raction $(\times 10^{-3})$
	(MeV)		(%)	BABAR	CLEO
$\Upsilon(3S) \to \gamma \chi_{b2}(1P)$	433.1	9699 ± 318	0.794	$10.6 \pm 0.3 \pm 0.6$	7.7 ± 1.3
$\Upsilon(3S) \to \gamma \chi_{b1}(1P)$	452.2	483 ± 315	0.818	$0.5 \pm 0.3^{+0.2}_{-0.1} (< 1.1)$	1.6 ± 0.5
$\Upsilon(3S) \to \gamma \chi_{b0}(1P)$	483.5	2273 ± 307	0.730	$2.7\pm0.4\pm0.2$	3.0 ± 1.1

Transitions rates to χ_{bJ}(1P) are unusual for quarkonium (J=2>0>1)

Y(2S): $E_{\gamma}^{*} = [300, 800]$ MeV

Measure $\chi_{bJ}(1P) \rightarrow \gamma Y(1S)$ and search for $Y(2S) \rightarrow \gamma \eta_b(1S)$:

Due to high background and low efficiency, no evidence for $\eta_{\rm b}(1S)$.

Transition	E^*_{γ}	Yield	ϵ	Derived Branchi	ng Frac	tion (%))
	(MeV)		(%)	BABAR	CB	CUSB	CLEO
$\chi_{b0}(1P) \to \gamma \Upsilon(1S)$	391.5	391 ± 267	0.496	$2.3 \pm 1.5^{+1.0}_{-0.7} \pm 0.2 \ (< 4.6)$	< 5	< 12	1.7 ± 0.4
$\chi_{b1}(1P) \to \gamma \Upsilon(1S)$	423.0	12604 ± 285	0.548	$36.2 \pm 0.8 \pm 1.7 \pm 2.1$	34 ± 7	40 ± 10	33.0 ± 2.6
$\chi_{b2}(1P) \to \gamma \Upsilon(1S)$	442.0	7665^{+270}_{-272}	0.576	$20.2 \pm 0.7^{+1.0}_{-1.4} \pm 1.0$	25 ± 6	19 ± 8	18.5 ± 1.4
$\Upsilon(2S) \to \gamma \eta_b(1S)$	$613.7^{+3.0+0.7}_{-2.6-1.1}$	1109 ± 348	1.050	$0.11 \pm 0.04^{+0.07}_{-0.05} (< 0.22)$	-	-	-

Y(3S): E* = [600,1100] MeV Measure $\chi_{bJ}(2P) \rightarrow \gamma Y(1S)$ and search for Y(3S) $\rightarrow \gamma \eta_b(1S)$:

Photon energy for $\eta_{\rm b}(1S)$ production is lower than expected, but the result is also only $\sim 2.7\sigma$ significant \rightarrow more data needed to fully utilize this conversion-based approach.

Transition	E_{γ}^{*}	Yield	ϵ	Derived Branching	Fraction	(%)
	(MeV)		(%)	BABAR	CUSB	CLEO
$\chi_{b0}(2P) \to \gamma \Upsilon(1S)$	742.7	469^{+260}_{-259}	1.025	$0.7 \pm 0.4^{+0.2}_{-0.1} \pm 0.1 \ (< 1.2)$	< 1.9	< 2.2
$\chi_{b1}(2P) \to \gamma \Upsilon(1S)$	764.1	14965^{+381}_{-383}	1.039	$9.9 \pm 0.3 \pm 0.4 \pm 0.9$	7.5 ± 1.3	10.4 ± 2.4
$\chi_{b2}(2P) \to \gamma \Upsilon(1S)$	776.4	11283^{+384}_{-385}	1.056	$7.1 \pm 0.2 \pm 0.3 \pm 0.9$	6.1 ± 1.2	7.7 ± 2.0
$\Upsilon(3S) \to \gamma \eta_b(1S)$	$907.9 \pm 2.8 \pm 0.9$	$933\substack{+263\\-262}$	1.388	$0.059 \pm 0.016^{+0.014}_{-0.016}$	-	-

- Finding the η_{b} and h_{b} were primary goals of the B-factories' bottomonium efforts
- BaBar and BELLE both set out to find the h_b
 - BaBar Approach:
 - Use the Y(3S) sample and look for π⁰ or dipion (π⁺π⁻) transitions down to the h_b
 - BELLE Approach:
 - Y(5S) has observed dipion transitions with rates larger than expected (e.g. to Y(nS) states with n=1,2,3)
 - Use the Y(5S) sample and look for a dipion transition down to the h_{b}

arXiv 1102.4565 (2011)

Event Selection

- Reconstruct $\pi^0(\gamma_1\gamma_2) + \gamma$
 - 3^{rd} photon required to be consistent with $h_b \rightarrow \gamma \eta_b$
 - Assume BR($h_b \rightarrow \gamma \eta_b$)~41% [PRD 66, 014012 (2002)]

Signal Selection

- Define " π^0 recoil mass" $m_{\text{recoil}}^2(\pi^0) \equiv \left(E_{\text{beam}} - E_{\pi^0}^*\right)^2 - p_{\pi^0}^{*2}$
- Fit for the number of π^0 / candidates in each bin of recoil mass
- Perform χ^2 fit to recoil massspectrum

arXiv 1102.4565 (2011)

Property	Value
Yield	10814±2813±1652 evts.
Significance	3.3 σ
$M [h_b(1P)]$	9902 \pm 4 \pm 2 MeV/c ²
$BF(Y(3S) \rightarrow \pi^{o}h_{b})$ $x BF(h_{b} \rightarrow \gamma \eta_{b})$	(4.3±1.1±0.9) x 10 ⁻⁴

- Measured mass agrees with spinweighted center-of-gravity of $\chi_{\rm b,I}(1P)$ states: ~9900 MeV
- **Branching fraction consistent** with theoretical expectation. Voloshin, Sov J Nucl Phys 43 1011 (1986)
- First evidence for the existence of this state

arXiv 1103.3419 (2011)

Y(5S) Dipion Recoil Search

Event Selection

- Reconstruct $\pi^+\pi^-$
 - Goal: observe $Y(5S) \rightarrow \pi^+\pi^- h_b$

Signal Selection

- Define "Missing Mass" (see below)
- Fit the missing mass spectrum for evidence of "recoil" against a resonance

$$M_{\rm miss} \equiv \sqrt{(E_{\rm Y(5S)} - E_{\pi\pi}^*)^2 - p_{\pi\pi}^2}$$

arXiv 1103.3419 (2011)

Y(5S) Recoil Search (cont.)

Background-subtracted fit to the data:

arXiv 1105.4583 (2011)

h_b(nP) spinoff

BELLE has gone on to look for resonant substructure in the transition $Y(5S) \rightarrow \pi^+ \pi^- h_{h}(nP)$

BELLE Interpretation of the data:

Using Energy/Momentum conservation, construct the mass of the $h_b \pi^+$ system – this is also the missing mass recoiling against the π^- . Model using sum of non-resonant component and two resonant components (P-wave Breit-Wigner Functions).

Interpretation

Results of the fit to the data, done separately in $h_b(1P)$ and $h_b(2P)$ events:

	$h_b(1P)\pi^{\pm}\pi^{\mp}$	$h_b(2P)\pi^{\pm}\pi^{\mp}$	
$M_1 \; ({\rm MeV}/c^2)$	$10605.1 \pm 2.2^{+3.0}_{-1.0}$	$10596 \pm 7^{+5}_{-2}$	
$\Gamma_1 \ ({\rm MeV})$	$11.4^{+4.5+2.1}_{-3.9-1.2}$	$16\substack{+16+13\\-10-14}$	Consistent results are
$M_2 \; ({\rm MeV}/c^2)$	$10654.5 \pm 2.5^{+1.0}_{-1.9}$	$10651 \pm 4 \pm 2$	obtained from the
$\Gamma_2 \ (MeV)$	$20.9^{+5.4+2.1}_{-1.7-5.7}$	12^{+11+8}_{-9}	h (1P) and h (2P)
a	$1.8^{+1.0}_{-0.7}{}^{+0.1}_{-0.5}$	$1.3^{+3.1+0.4}_{-1.1-0.7}$	$n_b(11)$ and $n_b(21)$
ϕ (°)	$188\substack{+44+4\\-58-9}$	$255^{+56+12}_{-72-183}$	
b	pprox 0	pprox 0	

The mass of the Z_{b1} is just around the threshold for BB* production and the mass of the Z_{b2} is just around the threshold for B* \overline{B} * production.

Properties of the Z_b states, averaged over all observations (includes dipion transitions to Y(nS), n=1,2,3) $M_{Z_{bl}} = 10608.4 \pm 2.0 \text{ MeV}$ $\Gamma_{Z_{bl}} = 15.6 \pm 2.5 \text{ MeV}$ $M_{Z_{b2}} = 10653.2 \pm 1.5 \text{ MeV}$ $\Gamma_{Z_{b2}} = 14.4 \pm 3.2 \text{ MeV}$

BELLE

arXiv 1105.4583 (2011)

An angular analysis favors the interpretation that $J^P = 1^+$

 \rightarrow Independent interpretations agree on their apparent correlation with the noted thresholds but disagree on their true nature (e.g. cusp/coupled channel effect ala. arXiv:1105.5492; molecular states ala arXiv:1105.5829 or arXiv:1105.5935; tetraquark states ala arXiv:1108.2197)

Conclusions

An Exciting Time for Spectroscopy

- An era of discoveries in the bottomonium sector
 - The $\eta_{b}(1S)$ in 2008 and the $h_{b}(nP)$ [n=1,2] and Z_{b} in 2011
 - Measured properties so far consistent with theory
- Experimental observations call for more theoretical understanding
 - decay rates to lower-mass bottomonium states from Y(5S) are higher than would be expected from Y(nS), n=1,2,3,4
 - The pattern of transition rates from $Y(3S) \rightarrow \chi_{bJ}(1P)$ system are not as expected between the J=0,1,2 states
- Too many topics to cover in one talk
 - more dipion transition studies; searches for D-wave bottomonium; The Y_b state; searches for physics beyond the Standard Model (e.g. low-mass Higgs bosons, low-mass dark matter, tests of lepton universality and lepton flavor violation) Stephen Sekula - SMU

Outlook

- More measurements
 - even years after closing out their data sets, BaBar and BELLE are both producing excellent results
 - expect this to continue as more measurements come to completion
- Discoveries and Puzzles?
 - The charmonium and bottomonium sectors continue to deliver discoveries . . .
 - . . . and puzzles!
 - Makes for an exciting interplay of theory and experiment

BACKUP SLIDES