HEAVY FLAVOUR RESULTS AT THE LHC

Introduction Flavour at the LHC Short presentation of LHCb Selected Cross-Section measurements Charm Physics ∞ b physics focusing on b \rightarrow s transitions 30 August 2011 Physics in Collision, Vancouver Patrick Koppenburg

on behalf of the LHCb Collaboration including ATLAS, CMS, ALICE results

30 August 2011, PIC, Vancouver [1/58]

INDIRECT SEARCHES

Sensitive to New Physics effects
 When was the Z discovered?

- 1973 from $N\nu \rightarrow N\nu$?
- 1983 at SpS collider?
- c quark postulated by GIM, third family by Kobayashi & Maskawa

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [2/58]

INDIRECT SEARCHES

Sensitive to New Physics effects
 When was the Z discovered?
 1973 from Nv → Nv?
 1082 et SaS callidar?

- 1983 at SpS collider?
- c quark postulated by GIM, third family by Kobayashi & Maskawa
- ✓ Estimate masses
 - t quark from $B\overline{B}$ mixing
 - ✓ Much larger mass coverage than \sqrt{s}
- ✔ Get phases of couplings
 - Half of new parameters
 - Needed for a full understanding
 - Look in lepton and flavour sectors
 - \rightarrow CP asymmetry in the Universe

The b an c quarks are the best laboratory for this programme Hot channels for the near future: $B_s \to \mu\mu$: Is there susy? $\mathcal{B} \propto \frac{\tan^{\circ}\beta}{m^4}$ $B_{\rm s} \rightarrow J/\psi\phi$: Beyond-SM CPV? $B_d \rightarrow \mu \mu K^*$: Right-handed currents? γ (ϕ_3): Is the CKM matrix sufficient? *y_{cp}*: Beyond-SM CPV in charm? I'll present new results in these areas!

Heavy Flavour Results at the LHC

FLAVOUR AT THE LHC

• It was the reign of the B factories

- ✓ Clean events
- ✓ More than $10^9 \ B\overline{B}$ pairs
- ... and of the Tevatron

FLAVOUR AT THE LHC

- It was the reign of the ${\cal B}$ factories
 - Clean events
 - ✓ More than $10^9 \ B\overline{B}$ pairs
- ... and of the Tevatron
- Now are the times of the LHC
 - Luminosity constantly growing
 - $\sigma_{b\bar{b}} \sim 300 \ \mu b \Rightarrow > 10^{12} \ b\bar{b}$ pairs produced so far
 - ✗ But events are busy
- Can we get them clean?

Patrick Koppenburg

FLAVOUR AT THE LHC

- It was the reign of the B factories
 - Clean events
 - ✓ More than $10^9 \ B\overline{B}$ pairs
- ... and of the Tevatron
- Now are the times of the LHC
 - Luminosity constantly growing
 - $\sigma_{b\bar{b}} \sim 300 \ \mu b \Rightarrow > 10^{12} \ b\bar{b}$ pairs produced so far
 - X But events are busy
- Can we get them clean?
 - ✓ You bet we can!

Like flavour? Come to the LHC!

Back To Basics

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [4/58]

www.koppenburg.or

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [5/58]

Nominal LHC Environment

- pp collider at 7 TeV (will be 14)
 - ullet Inelastic cross-section about 60 ${
 m mb}$
 - $b\bar{b}$ cross-section about 300 μb (one every 200)
- Bunch crossings at 20 MHz (will be 40)
- Luminosity up to $2\cdot 10^{33}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ (will get to 10^{34})
 - → $10^6 \ b\bar{b}$ pairs per second
- Direction of b and \overline{b} very correlated
 - → A 4π coverage not optimal
 - ➔ Build a forward spectrometer
- The choice of the LHCb collaboration
 - → \sim 75 μb in LHCb and Atlas/CMS acceptances

LHCb DETECTOR

Patrick Koppenburg

Forward detector (*b*-hadrons produced forward at LHC)

- Warm dipole magnet. Polarity can be reversed.
- Good momentum and position resolution
 - Vertex detector gets 8mm to the beam

LHCb DETECTOR & PERFORMANCE

Forward detector (*b*-hadrons produced forward at LHC)

- Warm dipole magnet. Polarity can be reversed.
- Good momentum and position resolution
- ✓ Excellent Particle ID

Heavy Flavour Results at the LHC

Momentum GeV/c

RICH2

RICH1

LHCh

Forward detector (*b*-hadrons produced forward at LHC)

- Warm dipole magnet. Polarity can be reversed.
- Good momentum and position resolution
- Excellent Particle ID
- Versatile two stage trigger
 - Hardware-based L0 trigger: moderate p_T cuts → 800 kHz
 - Whole data sent to trigger farm
 - 3 kHz output rate

ATLAS AND CMS

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [8/58]

[Lumi Plots]

Luminosity in 2011

 $90\mathchar`-95\%$ was recorded as quality data.

Patrick Koppenburg

Heavy Flavour Results at the LHC

CROSS-SECTIONS

- LHCb is the forward detector at the LHC
 - ✔ Unique rapidity coverage
- K_S^0 cross section
- $\Lambda/\overline{\Lambda}$ and p/\overline{p}
- ✔ Open charm
- ✔ J/ψ
- ✓ B
- Z, W ...

This is the tracking acceptance. For composites LHCb gets even higher.

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [11/58]

J/ψ cross section

Prompt J/ψ cross-section has been measured by LHCb [Eur. Phys. J. C 71 (2011) 1645.] CMS [BPH10014] Atlas [Nucl.Phys. B850 (2011) 387-444] Alice [arXiv:1105.0380]

LHC

Measurements getting more precise than theory — modulo polarisation to be measured.

Patrick Koppenburg

J/ψ cross section

Measurements getting more precise than theory — modulo polarisation to be measured.

Prompt J/ψ cross-section has been measured by LHCb [Eur. Phys. J. C 71 (2011) 1645.] CMS [BPH10014] Atlas [Nucl.Phys. B850 (2011) 387-444] Alice [arXiv:1105.0380]

LHCb also measures the double J/ ψ cross section: [LHCb-CONF-2011-009]

```
5.1\pm1.0\pm1.1~{\rm nb}^{-1}
```


Patrick Koppenburg Heavy Fla

Heavy Flavour Results at the LHC

Charm

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [13/58]

www.koppenburg.or

Heavy Flavour Results at the LHC

Patrick Koppenburg

10⁴

CHARM MIXING

$$D_{1,2} = p \left| D^0 \right\rangle \pm q \left| \overline{D}^0 \right\rangle$$
$$x = \frac{m_2 - m_1}{2\Gamma} \quad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

The mixing parameters are small $(\mathcal{O}(1\%))$

- HFAG average more than 5σ away from zero [HFAG]
- No single measurement excludes 0

➔ Measure

See Eunii Won

$$y_{\rm CP} = \frac{\hat{\Gamma}(D^0 \rightarrow K^+ K^-)}{\hat{\Gamma}(D^0 \rightarrow K^- \pi^+)} - 1 = y \cos \phi - x \sin \phi \left(\frac{A_m}{2} + A_{\rm prod}\right)$$

УCР

• Lifetime acceptance obtained on an event-by-event basis in data by varying the lifetime an re-running the trigger

Measure

$$y_{\rm CP} = \frac{\hat{\Gamma}(D^0 \rightarrow K^+ K^-)}{\hat{\Gamma}(D^0 \rightarrow K^- \pi^+)} - 1$$

Preliminary result on 2010 data:

[LHCB-CONF-2011-054]

$$y_{\rm CP} = (-0.55 \pm 0.63 \pm 0.41)\%$$

LHCb

data

$y_{\rm CP}$ and A_{Γ}

- Use $D^* \to D^0 \pi$: Separate prompt and so non-prompt using impact parameter
- Lifetime acceptance obtained on an event-by-event basis in data by varying the lifetime an re-running the trigger

A good way to look for CP violation in charm mixing is to search for a non-zero asymmetry in

$$A_{\Gamma} = \frac{\tau(\overline{D}^{0} \rightarrow K^{+} K^{-}) - \tau(D^{0} \rightarrow K^{+} K^{-})}{\tau(\overline{D}^{0} \rightarrow K^{+} K^{-}) + \tau(D^{0} \rightarrow K^{+} K^{-})} -$$

Preliminary result on 2010 data:

[LHCB-CONF-2011-054] [LHCB-CONF-2011-046]

Patrick Koppenburg

$$y_{\rm CP} = (-0.55 \pm 0.63 \pm 0.41)\%$$

$$h_{\Gamma} = (-0.59 \pm 0.59 \pm 0.21)$$
 %

Heavy Flavour Results at the LHC

DIRECT CP VIOLATION

Perform model independent binned CP violation search in Cabibbosuppressed $D^+ \rightarrow K^+ K^- \pi$ decays

- 370 000 events (Babar has 43k)
- Normalise D⁺ and D⁻ to remove production asymmetries
- Try several binnings (uniform or resonance-motivated)
- Look for fake CP violation in control modes and sidebands
- → No evidence of CP violation. Paper in preparation.

LHCB AND CHARM

Patrick Koppenburg

і нсі

Heavy Flavour Results at the LHC

Beauty

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [19/58]

Adda

www.koppenburg.or

b PRODUCTION

lhcd

b fragmentation f_s/f_d

Fraction of $b \rightarrow B_s X$ is an essential ingredient for $B_s \rightarrow \mu \mu$ and other rare decays

- LHCb has measured it in 2 ways
 - Ratio of $B \to D_s \mu X$ to $B \to D^+ \mu X$ modes [LHCb-CONF-2011-028]
 - Ratio of $B_d \rightarrow DK$ and $B_s \rightarrow D_s \pi$ modes [Accepted by PRL]

→ Combination [LHCb-CONF-2011-034]

$$\left(\frac{f_s}{f_d}\right)_{\rm LHCb} = 0.267^{+0.021}_{-0.020}$$

• Similar to LEP and Tevatron result $\left(\frac{f_s}{f_d}\right)_{\rm LEP,\ Tevatron} = 0.271 \pm 0.027$

Although there's no reason they should be the same

b-BARYONS

b-baryons are also seen by all experiments

- Atlas, CMS, LHCb see $\Lambda_b \rightarrow J/\psi\Lambda$ [ATLAS-CONF-2011-124] [CMS-DP-2011-007] [LHCb-CONF-2011-001]
 - LHCb: $au_{\Lambda_b} = 1.353 \pm 0.108 \pm 0.035$
- LHCb sees $\Lambda_b \to \Lambda_c \pi$, $\Lambda_b \to D^0 p \pi$, $\Lambda_b \to D^0 p K$ (can be used to measure γ) and a hint of $\Xi_b \to D^0 p K$ [LHCb-CONF-2011-036]

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [22/58]

See Rob Harr

The orphan B_c

Patrick Koppenburg

Heavy Flavour Results at the LHC

EXCITED B STATES

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [24/58]

DIRECT CPV IN CHARMLESS B DECAYS

CKM-angle γ

- $B \rightarrow hh$ measures γ via loop-induced transitions,
- While $B \to Dh$ and $B_s \to D_s h$ measure the "SM" value in tree-dominated decays
 - Similar to $B_d \to J/\psi K_S^0$ vs $B_d \to \phi K_S^0$ for sin 2eta
- Need more data for this programme. Now just observe and measure branching ratios: [LHCb-CONF-2011-057] $\mathcal{B}(B_s \rightarrow D_s \mathcal{K}) = (1.97 \pm 0.18 \stackrel{+}{_{-}0.18} \stackrel{+}{_{-}0.11} \stackrel{-}{_{-}0.11} (f_s/f_d)) \cdot 10^{-4}$

$b \rightarrow s$ transitions

 $b \rightarrow s$ transitions are loop-induced and thus suppressed in the SM. New Physics diagrams could compete.

- $b
 ightarrow s\gamma$
- $\bigcirc \overline{B_s \to \mu\mu}$
- $\bigcirc b \to \ell \ell s$
- OP violation in B_s mixing

 $b \rightarrow s\gamma$

Ratio of $B \to K^* \gamma$ and $B_s \to \phi \gamma$

- ✗ Photons → Broader signal peak than typical B decay
- × More work on backgrounds $(B \rightarrow K\pi\pi^0 \dots)$

$$egin{array}{rll} \displaystyle rac{\mathcal{B}(B
ightarrow K^* \gamma)}{\mathcal{B}(B_s
ightarrow \phi \gamma)} &= 1.52 \pm 0.15 \ \pm & 0.10 \pm 0.12 \, (f_s/f_d) \end{array}$$

- Expect 1.0 ± 0.2 from SM $\rightarrow 2\sigma$
- ✓ Largest $B_s \to \phi \gamma$ signal!

[LHCb-CONF-2011-055]

• On the way to measuring CP asymmetries

Patrick Koppenburg

$$b \to \ell \ell s$$

30 August 2011, PIC, Vancouver [29/58]
Angular Distributions & $A_{\rm FB}$

A lot of information in the full $\theta_\ell,~\theta_K$ and ϕ distributions

$$\frac{d\Gamma'}{d\theta_{I}} = \Gamma' \left(\frac{3}{4} F_{L} \sin^{2} \theta_{I} + A_{FB} \cos \theta_{I} + \frac{3}{8} (1 - F_{L}) (1 + \cos^{2} \theta_{I}) \right)$$

$$\frac{d\Gamma'}{d\phi} = \frac{\Gamma'}{2\pi} \left(\frac{1}{2} (1 - F_{L}) A_{T}^{(2)} \cos 2\phi + A_{Im} \sin 2\phi + 1 \right)$$

$$\frac{d\Gamma'}{d\theta_{K}} = \frac{3\Gamma'}{4} \sin \theta_{K} \left(2F_{L} \cos^{2} \theta_{K} + (1 - F_{L}) \sin^{2} \theta_{K} \right)$$

$$\Rightarrow Many observables depending on q^{2} = m_{\mu\mu}^{2} c^{4}$$
Figure & Matias]
[Eqcde, et al.] [Ali, et al.]

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [33/58]

Angular Distributions & $A_{\rm FB}$

A lot of information in the full $\theta_\ell,\,\theta_K$ and ϕ distributions

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_{I}} = \Gamma'\left(\frac{3}{4}F_{L}\sin^{2}\theta_{I} + A_{\mathrm{FB}}\cos\theta_{I}\right) + \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{I})\right) + \frac{3}{8}(1 - F_{L})(1 +$$

LHCb

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [33/58]

Füger & Matias] [Egede, et al.] [Ali, et al.]

$A_{\rm FB}$ Measurements Summary

BELLE: 230 $B \rightarrow \ell \ell \ell K^*$ events in 657 $\cdot 10^6 \ B\overline{B}$ [PRL103:171801,2009]

- BABAR: 60 $B \rightarrow \ell \ell \ell K^*$ events in 384 \cdot 10⁶ $B\overline{B}$ [PRD79:031102,2009]
- FB ASYMMETRY: All seem to favour positive values in first bins. Not conclusive yet...
- ➔ Need much more statistics

LHCb presents a result with 300 events with 309 pb^{-1} : Largest sample in the world

[LHCb-CONF-2011-038]

 $B \rightarrow \mu \mu K^*$ at LHCb

- Select $B^0 \to K^* \mu^+ \mu^-$ using boosted decision tree
 - Cut out J/ψ and $\psi(2S)$ (used as control of angular fits)
- Weight events according to $\eta^{-1}(\theta_{\ell},\phi,\theta_{K},q^{2})$

Patrick Koppenburg

$B \to \mu \mu K^*$ at LHCb

- Select $B^0 \to K^* \mu^+ \mu^-$ using boosted decision tree
 - Cut out J/ψ and $\psi(2S)$ (used as control of angular fits)
- Weight events according to $\eta^{-1}(\theta_{\ell},\phi,\theta_{K},q^{2})$
- Bin in q^2 and extract $\mathrm{d}\Gamma/\mathrm{d}q^2$

$B \to \mu \mu K^*$ at LHCb

- Select $B^0 \to K^* \mu^+ \mu^-$ using boosted decision tree
 - Cut out J/ψ and ψ(2S) (used as control of angular fits)
- Weight events according to $\eta^{-1}(\theta_\ell,\phi,\theta_K,q^2)$
- $\bullet~$ Bin in q^2 and extract $\mathrm{d}\Gamma/\mathrm{d}q^2$
- Fit for θ_K and θ_ℓ

SM: Bobeth et al., [arXiv:1105.0376] 30 August 2011, PIC, Vancouver [36/58]

 $B \rightarrow \mu \mu K^*$ at LHCb

Heavy Flavour Results at the LHC

Patrick Koppenburg

- Select $B^0 \to K^* \mu^+ \mu^-$ using boosted decision tree
 - Cut out J/ψ and $\psi(2S)$ (used as control of angular fits)
- Weight events according to $\eta^{-1}(\theta_\ell,\phi,\theta_K,q^2)$
- Bin in q^2 and extract $\mathrm{d}\Gamma/\mathrm{d}q^2$
- Fit for θ_K and θ_ℓ
 - ➔ Good agreement with SM
 - Will add more observables, like A²_T, sensitive to right handed currents

SM: Bobeth et al., [arXiv:1105.0376]

NEW CDF RESULT

 CDF has released an update to 6.8 fb⁻¹ → 165 candidates

[arXiv:1108.0695]

• They now also see a negative A_{FB} in the first bin

Comparison of all experiments

Heavy Flavour Results at the LHC

LHCh

$$B_s \to \mu \mu$$

$B_s \rightarrow \mu \mu \text{ Strategy } (300 \text{ pb}^{-1})$

- Select B → µµ using a boosted decision tree (BDT) tuned on MC but calibrated on real data B → hh and sidebands
- **2** Mass resolution calibrated on $b \rightarrow hh$ and dimuon resonances
- Look in 4×6 bins of BDT×Mass

Patrick Koppenburg

$B_{\rm s} \rightarrow \mu \mu$ Signal window (300 pb⁻¹)

$B_s \rightarrow \mu \mu$ Best Candidate

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [42/58]

$B \rightarrow \mu \mu$ LHCb limits (300+37 pb⁻¹)

 $1.5 \cdot 10^{-8}$ Expected limit assuming bkg+SM (95%) $1.6 \cdot 10^{-8}$ Observed limit (95%) p-value of background only hypothesis $1.5 \cdot 10^{-8}$ Observed limit, 2010+2011 (95%)

[LHCB-CONF-2011-037-001]

14%

 $5.1 \cdot 10^{-9}$

79%

$B_s \rightarrow \mu \mu$ at CMS (1.1 fb⁻¹)

- Cut-based selection optimised on MC and sidebands
- Divided in Barrel (two μ with $|\eta| < 1.4$) and Endcap (one μ with $|\eta| > 1.4$)
- Efficiency very stable wrt to multiplicity → good news for high lumi running
- Normalisation to $B_s \rightarrow J/\psi \phi$, $B_u \rightarrow J/\psi K$

	Barrel	Endcap
Expected signal	0.80 ± 0.16	0.36 ± 0.07
Expected Bkg	0.60 ± 0.35	0.80 ± 0.40
Expected $B \rightarrow hh$	0.07 ± 0.02	0.04 ± 0.02
Observed	2	1

Expected limit at 95% assuming SM **Observed limit** p-value of background only hypothesis

[1107.5834, submitted to PRL]

CMS Experiment at the LHC, CERN

Data recorded: 2011-Jun-28 09:47:55.087407 GMT(04:47:55 CDT) Run / Event: 167898 / 1773682763

(c) CERN 2000. All rights reserved.

http://iguana.com.dk/ispy

$\phi_{\rm s}$ in $B_s \to J/\psi \phi$ Status

Patrick Koppenburg

- ϕ_s is the phase in the B_s mixing
- SM prediction
 - $= 0.0363 \pm 0.0017 \; \text{rad} \; \text{[CKMFitter]}$
 - Deviations due to NP could large
- HFAG, UTFit, CKMFitter fits hint towards an additional phase [HFAG]
- LHCb has measured it with 2010 data : 37 pb $^{-1}$, 757 \pm 28 signal candidates [LHCb-CONF-2011-006]
- Now updating to 10 times more

See Rob Harr

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [48/58]

$$B_s \rightarrow J/\psi \phi$$

$$B_s \rightarrow J/\psi \phi$$

- Time dependent analysis
- Need to tag initial flavour of the B_s 2
 - Per event mistag calibrated on $B^+ \rightarrow J/\psi K$ and $B_d \rightarrow D^* \mu \nu_\mu$
 - Dilution $D_{tag} = 0.277 \pm 0.011 \pm 0.025$
 - Tagging power $\epsilon D^2 = (2.08 \pm 0.41)\%$

Mixing seen in $B_s \rightarrow D_s \pi$ See Bob Harr's talk

 $B_s \rightarrow J/\psi \phi$

- Time dependent analysis
- ② Need to tag initial flavour of the B_s
- ③ P→VV decay: needs an angular analysis to resolve CP-even and CP-odd components
 - Angular acceptance determined from MC
 - Maximum deviation from uniform: 5%

 $B_s \rightarrow J/\psi \phi$ Fit projections

Heavy Flavour Results at the LHC

Patrick Koppenburg Hea

Heavy Flavour Results at the LHC

HISTORY: FIRST OBSERVATION (30 pb^{-1}) LHC

✓ First observation of $B_s \rightarrow J/\psi f_0(980)$ ($f_0(980) \rightarrow \pi\pi$)

[Phys. Letters B 698 (2011) 115]

- That was in February this year
 - Almost immediately confirmed by Belle

 $[{\tt Phys.Rev.Lett.106:121802,2011}] \\ and \ CDF$

[arXiv:http://arxiv.org/abs/1106.3682]

 $\phi_{\rm s}$ in $B_{\rm s} \to J/\psi f_0(980)$ (330 pb⁻¹)

- Now we use it to extract ϕ_s
- ✓ The $f_0(980)$ looks pure scalar: no angular analysis needed.

 $\phi_{\rm s}$ in $B_s \rightarrow J/\psi f_0(980)$

 $\phi_s^{J/\psi f_0(980)} = -0.44 \pm 0.44 \pm 0.02 \text{ rad}$

Patrick Koppenburg

THCK

Heavy Flavour Results at the LHC

LHCh

$$\begin{array}{lll} \phi_s^{J/\psi f_0(980)} &=& -0.44 \pm 0.44 \pm 0.02 \ \mathrm{rad} \\ \phi_s^{J/\psi \phi} &=& +0.13 \pm 0.18 \pm 0.07 \ \mathrm{rad} \\ \phi_s^{\mathsf{Comb}} &=& +0.03 \pm 0.16 \pm 0.07 \ \mathrm{rad} \ \mathrm{(LHCb)} \end{array}$$

SM fit: $-0.0363\pm0.0017~\mathrm{rad}$

Patrick Koppenburg

Heavy Flavour Results at the LHC

 $\phi_{\rm s}$ in $B_s \to J/\psi f_0(980)$ and ϕ

LHCb the first to show point-estimates.

No need for $\Delta\Gamma_s/\phi_{\rm s}$ plots any more.

 $\phi_{s}^{\text{Comb}} = +0.03 \pm 0.16 \pm 0.07 \text{ rad (LHCb)}$

SM fit: $-0.0363\pm0.0017~\mathrm{rad}$

Patrick Koppenburg

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [54/58]

LHCb Upgrade plans

- Expect that integrated luminosity increases linearly with time. After 6 fb⁻¹, would take \sim 3 years to double statistics
 - Need an order of magnitude increase in luminosity $\rightarrow \mathcal{O}(10^{33})$
 - Most of the detector can cope, efficiencies don't degrade
- X L0 saturates for hadronic channels
 - *p_T* is not a discriminating variable anymore
 - Cut on impact parameter
- ➔ Read all out at 40 MHz
 - Most of the electronics to be replaced

Patrick Koppenburg

Heavy Flavour Results at the LHC

- The LHC is the new b factory.
- Big industry of cross section measurements at $\sqrt{s} = 7$ TeV
- The charm cross section is large good prospects for D physics
 Exploring b → s transitions.
 - B_s → μμ, B → μμK*, φ_s
 The LHC does not confirm the hints seen by the Tevatron or B factories
 But all measurements are statistically limited
- More to come in 2012, including CKM angles...

clusi

Backup

Heavy Flavour Results at the LHC

30 August 2011, PIC, Vancouver [59/58]

$B_s \rightarrow \phi \phi$ triple product

 $B_s \rightarrow \phi \phi$ is similar to $B_s \rightarrow J/\psi \phi$, but only penguininduced.

Triple product tests for CP violation without need of flavour tagging [arXiv:1107.1232], [Phys.Lett. B701 (2011) 357-362]

- $U ~=~ \sin \phi \cos \phi$
- $V = +\sin\phi$, if $\cos\theta_1\cos\theta_2 > 0$
- $V = -\sin\phi$, otherwise

$B_s \rightarrow \phi \phi$ triple product

 $B_s \rightarrow \phi \phi$ is similar to $B_s \rightarrow J/\psi \phi$, but only penguininduced.

Triple product tests for CP violation without need of flavour tagging [arXiv:1107.1232], [Phys.Lett. B701 (2011) 357-362]

$$U ~=~ \sin \phi \cos \phi$$

$$V = +\sin\phi$$
, if $\cos\theta_1\cos\theta_2 > 0$

$$V = -\sin\phi$$
, otherwise

Very clean signal: 320 events in 340 $\rm pb^{-1}$

Manning) (MeV

(c) V > 0

(b) U < 0

See Rob Harr

 $A_U = -0.064 \pm 0.057 \pm 0.014$ $A_V = -0.070 \pm 0.057 \pm 0.014$ [CONF-2011-052]

LUMINOSITY

Dipole magnet \rightarrow crossing angle

- added or subtracted from external angle
- Beam-gas events allow to measure beam shapes
- ➔ Precise measurement of LHC luminosity

Instantaneous Luminosity at 3.5 TeV

Instantaneous Luminosity at 3.5 TeV

