Peeking into the dark with the ATLAS detector

Alvaro Lopez Solis On behalf of the ATLAS collaboration CERN LHC seminar 19th July 2022

The Standard Model: successful theory

Why the Standard Model is not enough?

Very successful theory!

- Precision EWK measurements
- Higgs mechanism and Higgs discovery

But, many fundamental questions remain unanswered

- Gravity
- Particle mass hierarchy
- Naturalness
- Neutrino oscillations
- Matter-antimatter asymmetry
- Dark matter

.

Why dark matter?

Powerful evidence indicating the **existence of particles** in the Universe that don't interact with light

What is DM? How can we detect it ?

DM couples to SM ? -> We can see it at colliders ! ($pp \rightarrow$ SM + DM)

Many theories predicting DM + SM interactions. ATLAS DM searches widely use simplified models.

Assuming a interaction between dark matter and SM particles through mediators (either SM or new).

Simplified models: Mono-X searches

Simple representation of DM connecting to SM as proxy of more complete theories. SM couples with DM sector via a mediator

- Spin-0 or spin-1 mediator
- Signature of Mono-X (X = SM particle)

Exclusion of the combined searches sensitive to mono-X

A more UV-complete model: 2HDM+a

More complex dark sectors?

Is DM only just a single-flavoured unique particle and a mediator? The dark sector might be more interesting than we think

- More than one fermion and boson
- Several mediators with SM
- SM-like interactions between dark matter particles
- Long-lived particles

Strongly coupled DM: Semi-visible jets

Long-lived particles: Displaced jets

The ATLAS detector

Searches for dark matter particles in association with a top-quark

Mono-top: ATLAS-CONF-2022-036

tW+DM: ATLAS-CONF-2022-012

Search for Dark Matter plus a single-top

Resonant production

Non-resonant production

Analysis strategy

Selection based on a BDT trained on event-level discriminants with good separation power. Dominant background is V+jets and tt. Defined control and validation regions per production mode. SRs with 0 and 1 b-jet.

Post-fit results: New Physics?

Validation regions

Events Events Events Preliminary Z+jets ATLAS Data Top ATLAS Preliminary + Data 10 Res. -Non-Res. 10⁵ vs = 13 TeV, 139 fb Single top W+jets Diboson √s = 13 TeV, 139 fb⁻¹ Top Z+iets √s = 13 TeV, 139 fb⁻¹ Top Z+jets Monotop -Pre-Fit Bkg. ttV Uncertainty 10³ Monotop W+jets Single top Single top Monotop W+jets Post-Fit ttV SR0b Res. Diboson SR1b Non-Res. ttV Diboson 10⁴ WUncertainty - Pre-Fit Bkg. Post-Fit 10 Post-Fit WUncertainty - Pre-Fit Bkg. 10³ 10² 10² 10² 10 10 10 1 1.25 1 Bkg. 1 0.75 Data / Bkg. Data / Bkg. 1.2 .25 0.75 0.5 0.75 TVR TVR VVR TVR VVR TVR VVR TVR VVR1f TVR 0.8.5 1bLPhi 2bHPhi Res. 1bHPhi Non-Res. 1bHPhi VLQ 1bHPhi VLQ 1bHPhi1f 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Res. Non-Res VIO VLQ XGB XGB

Resonant signal region

Non-resonant signal region

Good agreement between data and SM.

Dominant uncertainties: background theory modelling and large-R jet calibration

Interpretation: simplified model

Exclusion limits derived from fit of the BDT output distribution for each production mode, separately.

Interpretation: simplified model and VLQ model

Additional interpretation using a vector-like-quark model.

No exclusion in early Run-2 results !

Search for dark matter in association with tW

Signals present one top, a W-boson and large missing transverse momentum.

- E_{τ}^{miss} trigger and high offline E_{τ}^{miss}
- Profit of the top quark and W-quark to reduce the background.

Exploring OL and 1L channels. 2L from previous results in final interpretation

ATLAS-CONF-2022-012

Analysis strategy: the zero-lepton channel

At least 4 standard jets and at least 1 b-jet and high E_T^{miss} One W-boson reconstructed as a large-R jet -> W-tagging

ΔR(b,W) > 1.0 and m(b,W) > 220 GeV.

Main bkgs. : Z+jets, W+jets, tt

Analysis strategy: the one-lepton channel

Top-decays hadronically: reclustering jets to reconstruct W

- At least 3 jets, 1 b-jet
- m_T(I,E_T^{miss}) > 200 GeV
- am_{T2} > 220 GeV
- m_w^{reclus} > 60 GeV

Main bkgs. : W+jets, tt

Top-decays leptonically: hadronic W-boson is boosted: W-tagged

- At least 3 jets, 1 b-jet
- $m_{T}(I, E_{T}^{miss}) > 130 \text{ GeV}$
- E_{T}^{imiss} significance > 15

Main bkgs. : ttZ, tt

18

Background estimation

Defining control and validation regions close to the SRs to normalize the most important backgrounds.

Common CRs: Z+jets, W+jets, single-top and ttZ.

Background-only fit results

Simultaneous of all the SRs and CRs of the OL, 1L. No evidence of New Physics observed. 2.50 deficit in one bin of the OL channel.

Interpretation of 2HDM+a limits

Free parameters of the model : m_{H^+} , m_a , m_χ , tan β (= vu/vd), sin θ (a-A mixing).

Final interpretation combining OL and 1L channels with 2L from previous analysis in tW+DM. Exclusion at high tan β due to process $\sigma \times B$ evolution

Searches for dark matter from dark heavy bosons and strongly coupled dark sectors

Leptonic mono-S: <u>ATLAS-CONF-2022-029</u> Semi-visible jets: <u>ATLAS-CONF-2022-038</u>

Search for dark Higgs in WW+E_T^{miss}: strategy

Events with one lepton: E_T^{miss} or muon triggers Dominant background \rightarrow W+jets: $m_T(I, E_T^{miss}) > 220 \text{ GeV}$ Large E_T^{miss} significance

Resolved region

At least 2 jets, but no b-tagged jets Reconstruction of W-candidate with the two jets with $m_{\rm ii}$ closest to $m_{\rm w}$

W-tagging from large-R. s \rightarrow WW boosted and lepton might overlap with hadronic W-boson \rightarrow TAR jet with $D_2^{\beta=1} < 1.1$ as W-candidate.

Background estimation

Both regions dominated by W+jets and tt-> Single-bin control regions to normalize background.

Results

m^{min} variable: minimum possible Dark Higgs boson mass from object kinematics→ SRs divided into bins

Good agreement between data and SM predictions in the signal region

Limits on Dark Higgs model

Highest exclusion for $m_z \sim 750$ GeV Exclusion for different m_z values for m_s in [130,390] GeV

Limits on Dark Higgs model

- q-q_{dark} interaction leading to some dark hadrons decaying into SM particles
 - Stable hadrons (DM candidates)
 - Unstable hadrons (decay into SM quarks)
- Semi-visible jets, not very explored
 - Ratio of stable dark hadrons over total number of hadrons: R_{inv}

- q-q_{dark} interaction leading to some dark hadrons decaying into SM particles
 Stable hadrons (DM candidates)

 - Unstable hadrons (decay into SM quarks) 0
- Semi-visible jets, not very explored
 - Ratio of stable dark hadrons over total number of hadrons: R_{inv} Ο

Visible jets. SM measurements

- q-q_{dark} interaction leading to some dark hadrons decaying into SM particles Stable hadrons (DM candidates)

 - Unstable hadrons (decay into SM quarks) 0
- Semi-visible jets, not very explored
 - Ratio of stable dark hadrons over total number of hadrons: R_{inv} Ο

- q-q_{dark} interaction leading to some dark hadrons decaying into SM particles Stable hadrons (DM candidates)

 - Unstable hadrons (decay into SM quarks) 0
- Semi-visible jets, not very explored
 - Ratio of stable dark hadrons over total number of hadrons: R_{inv} Ο

Analysis strategy: signal topology

Analysis strategy

Background estimation

- tt and single-top merged into one single contribution
- Each region (SRs and CRs) is divided into 9 bins
 - One norm factor per background.
- Multijet: correction factors in region with E_{τ}^{miss} in [250,300]

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 8

34

Results

After fit, no BSM signal has been observed and good agreement between data and SM prediction

Intepretation of results

36
Intepretation of results

Upper limit on λ (coupling strength q'_{dark} - q)

Searches for long-lived particles in

displaced hadronic jets

LLP into displaced jets : JHEP 06 (2022) 005

Searches for long-lived particles

The dark sector might also contain particles of ______ medium lifetime (LLPs)

 Decays within the detectors but displaced from interaction point.

Relatively unexplored during Run-I \rightarrow Focused on prompt particles searches.

LLP searches have experienced a tremendous advance at LHC during Run-II

- Displaced vertices
- Displaced leptons and jets
- Pixel dE/dx

•

Presenting a search for displaced jets in the ATLAS hadronic calorimeter

										J2 ui =	(32.6 - 139) 10	V2 - 10 16
	Model	Signature	∫L dt [ft	p ⁻¹]	Lifet	ime limit						Reference
	RPV $\tilde{t} \rightarrow \mu q$	displaced vtx + muon	136	ĩ lifetime					0.003-6.0 n	1	m(ĩt)= 1.4 TeV	2003.11956
	$\operatorname{RPV}\widetilde{\chi}^0_1 \to \operatorname{eev}/\operatorname{e}_{\mu\nu}/\operatorname{\mu}_{\nu}$	displaced lepton pair	32.8	${\tilde \chi}_1^0$ lifetime				0.003-1.0 m			$m(ilde{q}){=}$ 1.6 TeV, $m(ilde{\chi}_1^0){=}$ 1.3 TeV	1907.10037
	$\operatorname{GGM} \tilde{\chi}^0_1 \to Z \tilde{G}$	displaced dimuon	32.9	${\widetilde \chi}_1^0$ lifetime			-		0.	029-18.0 m	$m(ilde{g}){=}\;1.1$ TeV, $m(ilde{\chi}_1^0){=}\;1.0$ TeV	1808.03057
	GMSB	non-pointing or delayed γ	139	${\tilde \chi}_1^0$ lifetime				0.24	-2.4 m		$m(\tilde{\chi}_1^0, \tilde{G})$ = 60, 20 GeV, $\mathcal{B}_{\mathcal{H}}$ = 2%	CERN-EP-2022-0
	GMSB $\tilde{\ell} \to \ell \tilde{G}$	displaced lepton	139	$\tilde{\ell}$ lifetime			6	-750 mm			$m(\tilde{\ell}) = 600 \; { m GeV}$	2011.07812
ž	GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$	displaced lepton	139	τ̃ lifetime			9-270 mm				<i>m</i> (ℓ)= 200 GeV	2011.07812
SUS	AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^-$	disappearing track	136	$\tilde{\chi}_1^{\pm}$ lifetime				0.0	6-3.06 m		$m(\tilde{\chi}_1^{\pm})=$ 650 GeV	2201.02472
	AMSB $\rho p \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^-$	large pixel dE/dx	139	$\widetilde{\chi}_1^\pm$ lifetime				0.3-30.0	m		$m(\tilde{\chi}_1^{\pm})=600 \text{ GeV}$	2205.06013
	Stealth SUSY	2 MS vertices	36.1	S lifetime			0.1-51	9 m		-	$\mathcal{B}(\tilde{g} \rightarrow \tilde{S}g) = 0.1, m(\tilde{g}) = 500 \text{ GeV}$	1811.07370
	Split SUSY	large pixel dE/dx	139	ĝ lifetime				> 0.4	5 m	-	$m(ilde{g})=$ 1.8 TeV, $m(ilde{\chi}_1^0)=$ 100 GeV	2205.06013
	Split SUSY	displaced vtx + $E_{\rm T}^{\rm miss}$	32.8	ĝ lifetime			-	-	0.03	I-13.2 m	$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	1710.04901
	Split SUSY	0 $\ell,$ 2 – 6 jets $+ \textit{E}_{T}^{miss}$	36.1	ĝ lifetime			-	0.0-	2.1 m		$m(\widetilde{g}) =$ 1.8 TeV, $m(\widetilde{\chi}_1^0) =$ 100 GeV	ATLAS-CONF-2018
	$H \rightarrow ss$	2 MS vertices	139	s lifetime				0.31-72.	4 m		m(s)= 35 GeV	2203.00587
0	$H \rightarrow s s$	2 low-EMF trackless jets	139	s lifetime				-	0.19-6.94	m	m(s)= 35 GeV	2203.01009
10%	VH with $H \rightarrow ss \rightarrow bbbl$	2l + 2 displ. vertices	139	s lifetime		4-85	mm				<i>m</i> (<i>s</i>)= 35 GeV	2107.06092
38 =	FRVZ $H \rightarrow 2\gamma_d + X$	2 µ-jets	139	γ _d lifetime			0.6	54-939 mm			$m(\gamma_d) = 400 \text{ MeV}$	2206.12181
Sgg	FRVZ $H ightarrow 4 \gamma_d + X$	2 µ-jets	139	γ_d lifetime			2.7-53	4 mm			$m(\gamma_d) = 400 \text{ MeV}$	2206.12181
Ĩ	$H \rightarrow Z_d Z_d$	displaced dimuon	32.9	Z _d lifetime		0.009-24.0 m					$m(Z_d) = 40 \text{ GeV}$	1808.03057
	$H \rightarrow ZZ_d$	e, µ + low-EMF trackless j	et 36.1	Z _d lifetime				-	0.21-5.2 m		$m(Z_d) = 10 \text{ GeV}$	1811.02542
	$\Phi(200 \text{ GeV}) \rightarrow s s$	ow-EMF trk-less jets, MS v	tx 36.1	s lifetime				0.41-5	i1.5 m		$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 50 \text{ GeV}$	1902.03094
calar	$\Phi(600 \text{ GeV}) \rightarrow s s$	ow-EMF trk-less jets, MS v	tx 36.1	s lifetime			0.04-21.5 m				$\sigma \times \mathcal{B} = 1 \text{ pb}, m(s) = 50 \text{ GeV}$	1902.03094
Š	$\Phi(1 \text{ TeV}) \rightarrow s s$	ow-EMF trk-less jets, MS v	tx 36.1	s lifetime			0.06-52.4 r	n		-	$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 150 \text{ GeV}$	1902.03094
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx (µµ,µe, ee) +	μ 139	N lifetime		0.74-42 mm		_		_	m(N)= 6 GeV, Dirac	2204.11988
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee) +	μ 139	N lifetime		3.1-33 mm					m(N)= 6 GeV, Majorana	2204.11988
HNL	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee) +	e 139	N lifetime		0.49-81	mm				m(N) = 6 GeV, Dirac	2204.11988
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee) +	e 139	N life <mark>time</mark>	1	0.39-51 mm					m(N)= 6 GeV, Majorana	2204.11988
					0.001	0.01	0.1	1		10	¹⁰⁰ cτ [m]	
	1	$\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} = 13$	TeV									39
	p	artial data full da	ata			_است		<u> </u>				

LLP in displaced hadronic jets: signature

Heavy scalar mediator (Φ) decaying to two long-lived scalars (s)

 Scalars decaying to SM fermions (quarks,leptons)

Signature: displaced jets

- Large energy deposit in HCAL and low energy deposits in ECAL
- Trackless jets
- Narrow deposits

LLP in displaced hadronic jets: backgrounds

QCD jets

- Jets usually deposits in all subsystems.
- Large QCD cross-section in pp collisions \rightarrow dominant

Beam-induced background (BIB):

LHC beam-gas and beam-halo interactions upstream detector

Displaced jet

Cosmic backgrounds:

Cosmic rays and external radiation to detector

LLP in displaced hadronic jets: analysis strategy

Displaced jet NN

Neural network (CNN plugged on LSTM) to distinguish signal, BIB and QCD.

- Quality, momenta, IP of tracks around candidate jets
- Momenta, timing, energy fraction in ECAL and HCAL of topoclusters.
- Spatial and timing info of muon-tracks arounds jets. Jet variables.
- ANN to reduce dependence on mismodelled key observables.

Separate NN for low- E_T and high- E_T . Good separation between signal and BIB and multi-jet.

BDT and event selection

BDT defined per-event. Based on jet-NN signal and BIB score of two leading E_T jets and event variables. Event cleaning: jet time, BDT score cut, trigger matching of one jet and high E_{HCAL}/E_{ECAL} Final selection to remove BIB and cosmic.

Signal and control regions: ABCD method

After event selection, main background is multi-jet. Modified ABCD method to estimate multi-jet background.

• Combined fit of multi-jet background following relation of ABCD method.

Define SR (A) and CRs (B,C, D) based on top of event selection with: BDT score and $\Sigma\Delta$ Rmin(jet,tracks).

Multi-jet background prediction in SR (A)

$$N_{
m A} = (N_{
m B} \cdot N_{
m C})/N_{
m D}$$

Low- $E_{\rm T}$ selection	A	В	С	D
Observed data	23	3	220	61
a priori				
Estimated background	10.8 ± 6.6	3 ± 1.7	220 ± 15	61 ± 7.8

High- $E_{\rm T}$ selection	A	В	C	D
Observed data	22	7	233	131
a priori				
Estimated background	12.4 ± 4.7	7 ± 2.6	233 ± 15	131 ± 11

Excesses observed (p-value: low- $E_T = 0.076$, high- $E_T = 0.083$) Agreement between data and SM prediction.

Interpretation: limits if Φ is SM Higgs boson

Less sensitive limit from 2016 combination at low *ct* due to not inclusion of ID

Sensitivity to BR(H \rightarrow ss) down to 1%

Better sensitivity than previous CalRatio:

- Better trigger.
- Better displaced jet-NN.

Contributing searches:

arXiv:2203.00587

arXiv:2203.01009 Calorimeter, 11 fb⁻¹

JHEP 11 (2021) 229

 10^{-1}

Muon System (2 Vtx Only), 139 fb⁻¹

Muon System (1 Vtx + 2 Vtx), 36 fb⁻¹

Phys. Rev. D 99 (2019) 052005 Calorimeter, 139 fb⁻¹

Phys. Rev. D 101 (2020) 052013 Tracker (LRT), 139 fb

Eur. Phys. J. C 79 (2019) 481 Tracker+Muon System, 36 fb⁻¹

 10^{2}

cτ [m]

10

Interpretation: limits if Φ is SM Higgs boson

47

JHEP 06 (2022) 005

Interpretation: limits if Φ is new heavy scalar

Run: 355754 Event: 3106495648 2018-07-16 18:53:51 CEST

Event selected by region A in high- E_T selection.

<u>JHEP 06 (2022) 005</u>

Conclusion

Run-2 has provided us with more and improved DM searches and seen the expansion of ATLAS research to long-lived particles

Recent new analyses searching for dark matter in association to a top-quark.

- Mono-top searches greatly improved the current limits with respect to Early Run-2
- Additional channels increase sensitivity in tW+DM searches.

Searches for more complex dark sectors presented

• First results on strongly coupled DM sector in semi-visible jets with ATLAS and in the single-lepton channel for dark Higgs into WW.

New search for long-lived particles using displaced jets

• Improving early Run-2 limits and sensitivity at middle *ct*

LHC Run-3 started. New and exciting results await us. Stay tuned !

Where to find it ? Is it big or small?

The most favoured theory is that it is a WIMP (weakly interacting particle).

What kind of particle?

Scalar and pseudo-scalar mediators DMtt

Mono-top backup

Search for Dark Matter plus a single-top

Vector-like quark (VLQ)

 E_{T}^{miss} trigger and $E_{T}^{miss} > 250 \text{ GeV}$ At least one top-tagged large-R jet $\Delta \phi(j, E_{T}^{miss}) > 1.0$ At least one forward jet.

57

Mono-top: BDT selection

Variable	Description	Resonant DM model	Non-resonant DM model	VLQ	ATLAS Preliminary ● Data Top
$E_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum	1	\checkmark	\checkmark	10^4 /s = 13 TeV, 139 fb ⁻¹ Single top Diboson Monotop
Ω	$E_{\rm T}^{\rm miss}$ and large- <i>R</i> jet $p_{\rm T}$ balance: $\frac{E_{\rm T}^{\rm miss} - p_{\rm T}(J)}{E_{\rm T}^{\rm miss} + p_{\rm T}(J)}$	\checkmark	\checkmark	\checkmark	VVR Res. — Pre-Fit Bkg.
N _{jets}	Small-R jet multiplicity	\checkmark	\checkmark	\checkmark	
$\Delta R_{\rm max}$	Maximum ΔR between two small- <i>R</i> jets	\checkmark	\checkmark	\checkmark	
$m_{\mathrm{T,min}}(E_{\mathrm{T}}^{\mathrm{miss}},b\text{-jet})$	Transverse mass of $E_{\rm T}^{\rm miss}$ and the closest <i>b</i> -tagged jet.	\checkmark	\checkmark	\checkmark	
$m_{ m top-tagged}$ jet	Mass of the large-R top-tagged jet	\checkmark		\checkmark	
$\Delta p_{\rm T}$ (J,jets)	Scalar difference of large- R jet $p_{\rm T}$ and the sum of $p_{\rm T}$ of all small- R jets.	\checkmark	1		10
H_{T}	Sum of all small- R jet $p_{\rm T}$		\checkmark	\checkmark	
$H_{\mathrm{T}}/E_{\mathrm{T}}^{\mathrm{miss}}$	Ratio of $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$		\checkmark	\checkmark	
$\Delta E(E_{\rm T}^{\rm miss},J)$	Energy difference between $E_{\rm T}^{\rm miss}$ and the large- R jet		\checkmark	\checkmark	
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},J)$	Angular distance in the transverse plane between $E_{\rm T}^{\rm miss}$ and large- <i>R</i> jet		\checkmark	\checkmark	
$p_{\mathrm{T}}(\mathbf{J})$	Large- R jet $p_{\rm T}$			\checkmark	0.75F
$m_{\rm T}(E_{\rm T}^{\rm miss},J)$	Transverse mass of the $E_{\rm T}^{\rm miss}$ and large-R jet			\checkmark	0.5 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.
$\Delta \phi(b$ -tagged jet, J)	Angular distance in the transverse plane between the large- R jet and the leading b -jet			\checkmark	$BDT < 0.5 \rightarrow VB : BDT > 0.5 \rightarrow SBs$

- Non-resonant

- VIQ

Background estimation

Dominant background is V+jets and tt. Defined control and validation regions per production mode. Same definitions for three production modes

+ 1forward jet for VLQ model.

ATLAS Preliminary

- Resonant

Post-fit results: VLQ

Good agreement between data and SM. Dominant uncertainties: large-R jet calibration and modelling

ATLAS-CONF-2022-036

Interpretation: simplified model and VLQ model

Exclusion limits derived from fit of the BDT output distribution for each production mode, separately. Significant improvements from early Run-2 results !

tW+MET backup

Single-top quark production and Dark Matter

s-channel

Negligible contributions

t-channel

Subdominant production mode of single-top quark in association to dark matter in 2HDM+a model

 $pp \rightarrow tW_{\chi\chi}$ inclusive

····· pp \rightarrow tH[±], H[±] \rightarrow W_{XX}

mmm pp → tjχχ (t-channel)

sinθ=1/√2 m(a)=150 GeV m(A)=m(H)=m(H[±])=1000 GeV

Single-top quark production and Dark Matter

tW-channel

Dominates the cross-section of the single-top production with dark matter Resonant and non-resonant production mode

Analysis strategy: the two-lepton channel

Pseudo-reconstruct top quark to discriminate. m_{T2} , m_{bl}^{min} and m_{bl}^{t} -> Endpoints for SM tt and single-top.

- At least 1 b-jet and 1 additional jet
- m_{T2} > 130 GeV
- m______ < 170 GeV
- $m_{bl}^{t} > 150 \text{ GeV}$

Main bkgs. : Z+jets, ttZ, tt and single-top

Background estimation

Defining control and validation regions close to the SRs to normalize the most important backgrounds.

OL and 1L channels

- Common CRs for Z+jets, W+jets, single-top and ttZ.
- tt normalized separately for OL and 1L regions.

2L channel

- CRs for tt and ttZ
- Additional control region for WZ

Variable	SR	CR(tī)	CR(ttZ)	CR(WZ)	VR(tī)	$VR(3\ell)$
$N_{\ell}^{\rm signal}$	= 2	= 2	= 3	= 3	= 2	= 3
ι.	(OS)	(OS)	$(\geq 1 \text{ SFOS})$	$(\geq 1 \text{ SFOS})$	(OS)	$(\geq 1 \text{ SFOS})$
$p_{\rm T}(\ell_3)$ [GeV]	-	-	> 20	> 20	-	> 20
$m_{ee/\mu\mu}$ [GeV]	∉ [71, 111]	∉ [71, 111]	∈ [71, 111]	\in [71, 111]	∉ [71, 111]	\in [71, 111]
N _{jet}	≥ 1	≥ 1	≥ 3	∈ [1, 3]	≥ 1	≥ 1
N _{b-jet}	≥ 1	≥ 1	≥ 1	= 1	≥ 1	≥ 1
			$(\geq 2 \text{ if } N_{\text{jet}} = 3)$			
$m_{b\ell}^{\min}$ [GeV]	< 170	< 170	< 170	> 170	< 170	varies
$m_{b\ell}^{t}$ [GeV]	> 150	< 150	-	-	> 150	_
m_{T2} [GeV]	> 130	$\in [40, 80]$	> 90	> 90	∈ [40, 80]	> 90
$\Delta \phi_{\min}$ [rad]	> 1.1	> 1.1	-	-	> 1.1	-

Background-only fit results

Simultaneous of all the SRs and CRs of the 0L, 1L and 2L regions No DM evidence observed. 2σ excess observed in 2L and 2.5σ deficit in one bin of the 0L channel.

0L+1L combined fit

ATLAS 1L+2L fit

Dark Higgs backup

67

TAR jets for W-tagging in Dark Higgs search

69

Fit configuration: the m_s^{min} variable

Reconstructing m_s challenging. But beneficial as **discriminant** variable for fit (resolved and merged)

LLP CalRatio backup

70

Searches for long-lived particles

Apart from dark matter, many BSM theories predict particles of medium lifetime (LLPs)

• Decays within the detectors

Relatively unexplored during Run-I \rightarrow Focused on prompt particles searches.

LLP searches have experienced a tremendous advance at LHC during Run-II

- Displaced vertices
- Displaced leptons and jets
- Pixel dE/dx
- Displaced vertices

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: July 2022

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATL-PHYS-PUB-2022-034

Presenting a search for displaced jets

- LLP decaying after ATLAS tracker.
- Large deposits in hadronic calorimeter
- Sensitive between 20mm and 20m

CalRatio triggers

Two step trigger: L1 and HLT. L1 seeds the candidates to HLT

- L1: Triggering on events with narrow deposits ($\Delta \eta \times \Delta \phi = 0.2 \times 0.2$) in calorimeter and $E_{HCAI} / E_{FCAI} > 9$
- HLT: CalRatio dedicated jet cleaning (standard jet cleaning minus E_{HCAL}/E_{ECAL}) and BIB removal (no jet with deposits in 4 cells in ϕ and timing) applied

Efficiency dependent on LLP $p_{\scriptscriptstyle T}$ and decay position.

CMS long-lived particles summary

Overview of CMS long-lived particle searches

RPV UDD, g→tbs, ma = 2500 GeV RPV UDD, $f \rightarrow dd$, $m_i = 1600 \text{ GeV}$ RPV UDD, t→dd, m; = 1600 GeV RPV LOD, $\tilde{t} \rightarrow bl$, $m_i = 600 \text{ GeV}$ RPV LOD, $\tilde{t} \rightarrow bl, m = 460 \text{ GeV}$ RPV LOD, t+bl, mi = 1600 GeV GMSB, $\hat{a} \rightarrow q\hat{G}$, $m_A = 2450 \text{ GeV}$ GMSB, $\hat{g} \rightarrow g\tilde{G}$, $m_{\hat{a}} = 2100 \text{ GeV}$ Split SUSY, $\hat{g} \rightarrow q \hat{q} \chi_1^0$, $m_{\hat{q}} = 2500 \text{ GeV}$ Split SUSY, $\hat{a} \rightarrow a \hat{a} \chi_1^0$, $m_{\hat{a}} = 1300 \text{ GeV}$

Split SUSY (HSCP), $f_{\delta a} = 0.1$, $m_{\delta} = 1600$ GeV

Stopped \bar{g} , $\bar{g} \rightarrow q\bar{q}\chi_1^0$, $f_{\delta q} = 0.1$, $m_{\delta} = 1300 \text{ GeV}$

Stopped $\bar{t}, \bar{t} \rightarrow t \gamma^0, m_i = 700 \text{ GeV}$

AMSB, $\gamma^{\pm} \rightarrow \gamma_{\tau}^{0} \pi^{\pm}$, $m_{\tau^{\pm}} = 700 \text{ GeV}$

GMSB SPS8, $\chi_1^0 \rightarrow \gamma \hat{G}$, $m_{\chi_1^0} = 400 \text{ GeV}$

GMSB. co-NLSP. $\tilde{l} \rightarrow l\tilde{G}$. m = 270 GeV

RPV UDD, $\tilde{g} \rightarrow tbs$, $m_{\tilde{a}} = 2500 \text{ GeV}$

USY RPC

NSN N

 $H \rightarrow Z_D Z_D(0.1\%), Z_D \rightarrow \mu \mu, m_H = 125 \text{ GeV}, m_\chi = 20 \text{ GeV}$ $H \rightarrow Z_D Z_D(0.1\%), Z_D \rightarrow \mu \mu (15.7\%), m_H = 125 \text{ GeV}, m_X = 5 \text{ GeV}$ $H \rightarrow XX(10\%)$, $X \rightarrow ee$, $m_H = 125$ GeV, $m_F = 20$ GeV $H \rightarrow XX(0.03\%), X \rightarrow II, m_V = 125 \text{ GeV}, m_V = 30 \text{ GeV}$ $H \rightarrow XX(10\%)$, $X \rightarrow b\bar{b}$, $m_H = 125$ GeV, $m_X = 40$ GeV $H \rightarrow XX(10\%), X \rightarrow bb, m_H = 125 \text{ GeV}, m_X = 40 \text{ GeV}$ $H \rightarrow XX(10\%), X \rightarrow b\bar{b}, m_{\mu} = 125 \text{ GeV}, m_{\gamma} = 40 \text{ GeV}$ dark OCD, mn_ = 5 GeV, m1_ = 1200 GeV

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The v-axis tick labels indicate the studied long-lived particle.