Readout for Magnet Station

Cesar L. da Silva Los Alamos National Lab

Online Tracking

- particles don't bend in Y-direction
- a combination of 4 Z-position hits in the same Y direction determine a track

Online Tracking in the Magnet Station

Finding Patterns

- simulation done with all particles depositing at least one hit in UT
- including off-vertex particles (like kaon decays)
- zbar; is the 10 most significant bits of the cluster Z position (3.5 mm segments)

Look-Up-Table

• 200 combinations per zbar0 combinations found from simulations

· Los Alamos

Segment Occupancy

- coverage 100<ZBAR<850
- all hits in the MS, including beam BG and secondary particles from the magnet walls and beam pipe
- hot occupancy spot at the magnet entrance has not been considered to be instrumented
- 1700 hits/panel/crossing \rightarrow 800 clusters/panel/crossing
- no clustering applied so far
- now we apply these hits to the LUT

- lots of hits which are not going to be used for tracking are rejected in the front-end electronics
- still lots of fake tracks in the region with high occupancy caused by the flange in the beam pipe
- clustering should help reduce ghost tracks.

Multiplicities

A factor of 5 reduction on the average number of streamed hits. How much reduction can we get with clusters ?

Number of Logic Units needed

- 200 combinations per zbar0 combinations
- 750 zbar0 units per panel
- 23 Y segments
- total of 3.5M Logic Units per panel are needed

3 FPGAs per panel ?

Data Packaging

- the number of ID bits depends on how many optical links each online tracking board will have
- can we get 23×4=92 output links per panel ?
 - one per each y segment × layer
 - that will save us 7 bits in the cluster bit pattern
- cluster bit pattern
 - 13 bits Z position (0.4 mm)
 - 2 bits cluster size (do we want clusters bigger than 4 Z bars ?)
 - 5 bits total ADC ?
 - TOTAL 20 bit

Data Streaming

- top 1000 clusters / panel / crossing according to Jakub's simulation
- $\bullet\,$ assume a factor of 5 reduction with the online tracking board $\rightarrow 200$ clusters/panel/crossing
- 40 MHz × 200 clusters × 20 bits / 92 optical links = 1.7 Gb/s / optical link

BACKUP SLIDES

A Soft Particle Tracker

Converted Photon Acceptance

• end vertex of electrons from converted photons

- the red band corresponds to the increased acceptance provided by the Magnet Station
- momentum > 500 MeV

Particle Acceptance

• possible coverage : 4 < Z(m) < 7.5

- mass peaks from 2016 pPb data
- mass resolution obtained by MS will be equivalent to long tracks