

Production of Medical Radioniclides in Russia: Status and Future

B.L. Zhuikov

Institute for Nuclear Research of Russian Academy of Sciences, Moscow-Troitsk

3rd International Nuclear Chemistry Congress Sicily - Italy, Sept. 18-23, 2011

Main Producers of Medical Isotopes in Russia

- Kurchatov Institute of Atomic Energy (Moscow): cyclotron, liquid fuel reactor
- Production Association MAYAK (Ozersk, Ural region): nuclear reactor, hot cells
- Research Institute of Atomic Reactors (Dimitrovgrad): high flux reactor, hot cells
- Medical Preparations Plant (Moscow): hot cells
- Institute for Physicas and Power Engineering (Obninsk): hot cells
- Karpov Institute of Physical Chemistry (Obninsk): nuclear reactor, hot cells
- Cyclotron Co. (Obninsk): 23 MeV and 14 MeV cyclotrons
- Khlopin Radio Institute (St-Petersburg): cyclotron
- Central Research Institute of Radiology and Roentgenology (St-Petersburg)
- State Institute of Applied Chemistry (St-Petersburg): hot cells
- Institute for Nuclear Research of Russian Academy of Sciences (Troitsk): LINAC

Kurchatov Intitute of atomic Energy, Moscow

SOLUTION REACTOR: ⁹⁹Mo (under development) ⁸⁹Sr via ⁸⁹Kr (under development)

CYCLOTRON 30 MeV: ²⁰¹Tl (²⁰³Tl-targets) ¹²³I (via irradiation of ¹²⁴Xe)

"ARGUS" – 20 kW solution reactor Fuel: UO₂SO₄ water solution (HEU)

Production Association MAYAK, Ozersk, Chelyabinsk region (URAL)



Reactors «Ruslan» and «Ludmila»

RADIOISOTOPE PLANT

Produced radionuclides: ^{89,90}Sr, ³²P, ³⁵S, ¹⁴C, ⁹⁹Mo (under development)

Process facility for production of gammasources (Co-60, Ir-192, etc.) for medicine, sterilizers and flaw meters

Research Institute of Atomic Reactors (RIAR), Dimitrovgrad (Volga region)

Produced radionuclides:

^{117m}Sn, ¹²⁵I, ¹³¹I, ¹⁸⁸W, ⁸⁹Sr, ¹⁵³Sm, ¹⁷⁷Lu, ¹⁴⁴Ce - spring microsources, actinides

99Mo (starting up)

Nuclear reactors for isotope production:RBT-10/1 and 10/2BOR-60 (fast neutrons)SM-32.1015 n/cm²·s

Mo-99 Crisis and the Role of Russia

⁹⁹Mo (66 h) \rightarrow ^{99m}Tc (6 h) About 80% of all radiodiagnostic procedures are performed with ^{99m}Tc

Consumption of molybdenum-99 (6-day decay)

In the world: 12 000 Ci/week in USA: 5 000 - 7 000 Ci/week

in Russia 200 Ci/week

Main producers:	
MDS Nordion (Canada –NRU, Maple-1)	40% <i><</i>
Covidien (Netherlands - HFR,	
Belgium - BR2, France - Osiris)	25%
IRE (Belgium)	20%
NTR (South Africa)	10%
Others:	5%
Duccio Austrolio Indonesio Argontino Chil	Dolond Domonia Dolvicton Fount

Russia, Australia, Indonesia, Argentina, Chili, Poland, Romania, Pakistan, Egypt NEAR FUTURE: China (2015), Japan (2014), South Korea (2016)

Russian project at RIAR (Dimitrovgrad) (2011-2012)1st step:800-1000 Ci/week,2nd step:2200-2500 Ci/week(Alkaline technology of German company Isotope Technologies Dresden)

The most prospective ways solving the "Mo-99 crisis"

1. Targets from low enriched uranium (LEU), 19.9% or lower ²³⁵U Successful developments in Argentina, South Korea, Australia, South Africa, Belgium

2. Solution reactors

Developments in USA (Babcock & Wilcox - Covidien), Taiwan, Russia (KI-"ARGUS") The most prospective challenge: LEU

- **3. Accelerators mainly of electrons** (γ, n) *also protons* (p, n) *IRE/IBA: Ta+p* (350 MeV, 1000 μA)
- **4. Neutron capture** ⁹⁸Mo (n, γ) ⁹⁹Mo Less effective local production in many places in small amounts

THERE ARE SEVERAL MORE APPROACHES

Karpov Institute of Physical Chemistry (Obninsk branch)

Nuclear reactor Hot cells

PRODUCED RADIONUCLIDES

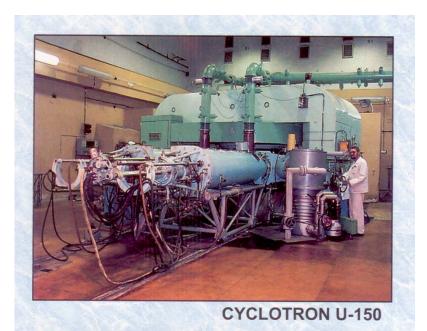
⁹⁹Mo (local supplies and export) ^{99m}Tc-generator ¹³¹I-sodium iodide, sodium hippurate, bengal rose, human serum albumin ¹²⁵I (under development) ⁶⁷Ga-citrate ¹⁸⁸W/¹⁸⁸Re-generator (under development) ¹⁰³Pd (together with INR)

Institute for Physics and Power Engineering (IPPE), Obninsk, Kaluga region

First world's nuclear power plant

MEDICAL ISOTOPE PRODUCTION

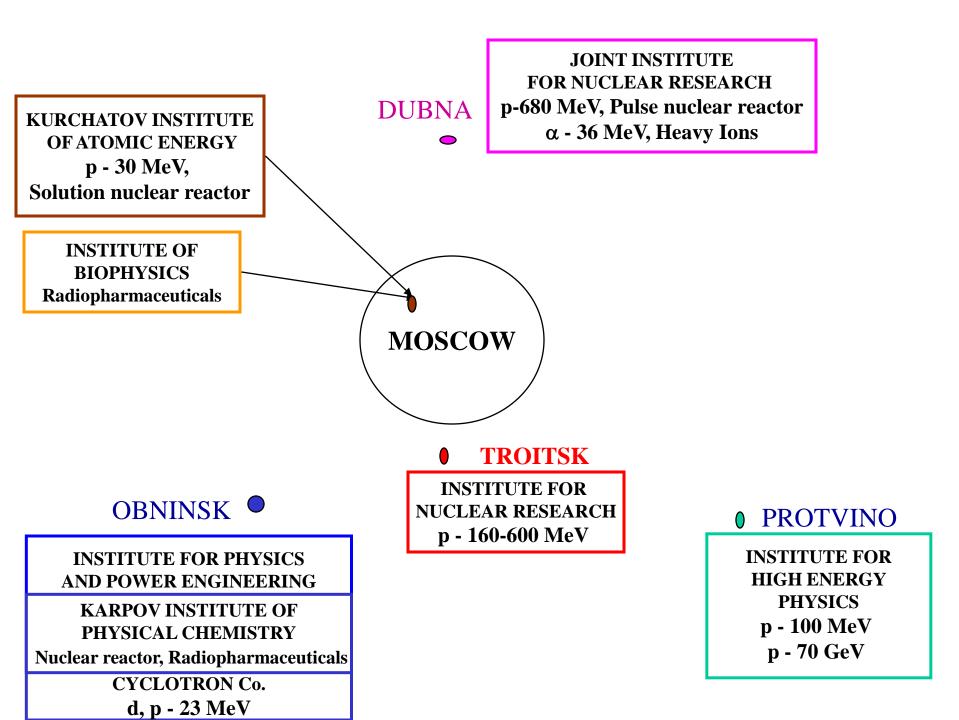
- ¹²⁵I microsources for prostate cancer therapy
- •⁹⁰Sr microsources for cardio-vascular therapy
- ^{99m}Tc-generator (GMP in project)
- ¹⁸⁸W/¹⁸⁸Re-generator
- ²²⁵Ac, ²²⁵Ac/²¹³Bi-generator (under development)
 ¹³³Xe



• ³²P

Cyclotron Co., Obninsk (at IPPE site)

TWO CYCLOTRONS: 23 MeV (1100µA) and 14 MeV (1500µA) protons, deuterons, α -particles

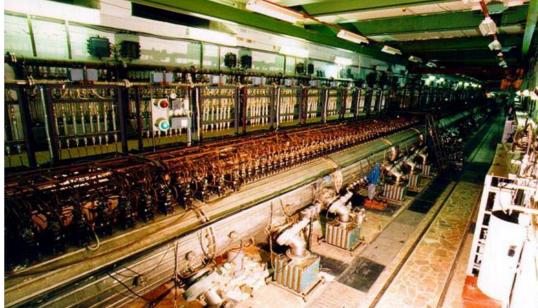

PRODUCED RADIONUCLIDES ⁶⁷Ga, ⁶⁸Ga, ¹⁰³Pd, ¹¹¹In, ⁸⁵Sr, ⁶⁸Ge/⁶⁸Ga-generator

7 HOT CELLS

RADIOCHEMICAL SECTION

MOSCOW, RUSSIA

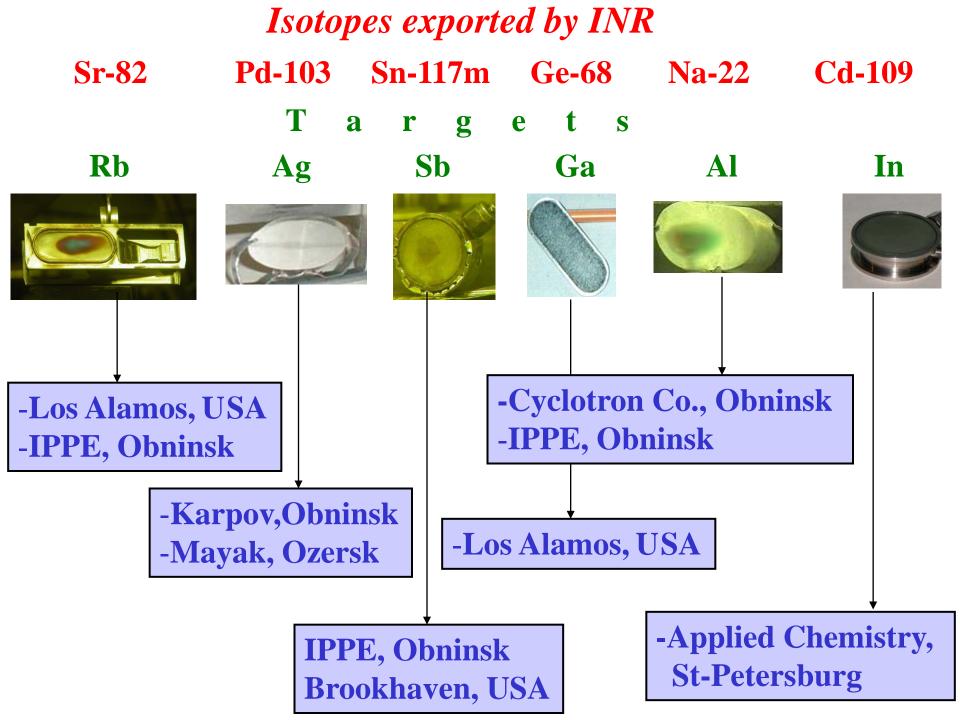
TROITSK TOWN


INR ACCELERATOR

1 km

RUSSIAN ACADEMY OF SCIENCES

INSTITUTE FOR NUCLEAR RESEARCH Target Irradiation Facility for Isotope Production at Linear Accelerator of Institute for Nuclear Research, Troitsk (constructed 1992, several upgrades)

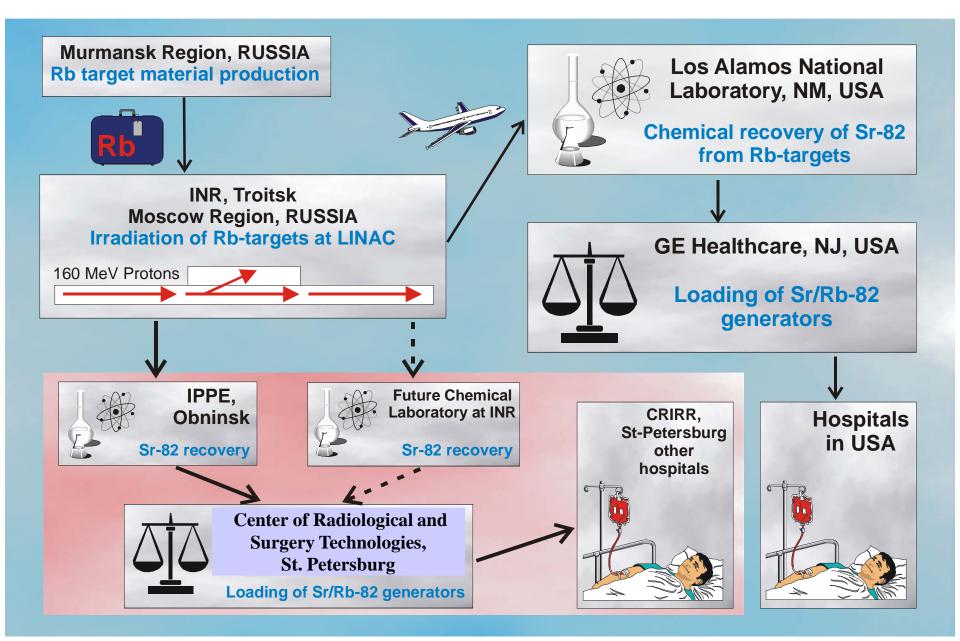

Proton energy: 158 MeV (options: 143,127,113,100,94 MeV) Typical beam current: 120 μA

PRODUCED RADIONUCLIDES: ⁸²Sr, ^{117m}Sn, ²²Na, ¹⁰⁹Cd, ¹⁰³Pd, ⁶⁸Ge, ⁸³Rb

> Under development: ⁷²Se, ^{64,67}Cu, ²²⁵Ac, ²²³Ra

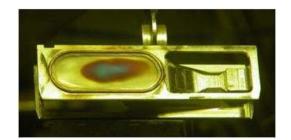
Isotopes Produced in INR and

Possible Activity Generating in One Accelerator Run at 120 µA


Radio-	Half life	Target	Energy	Bombardment	Activity
nuclide	period		range,	period,	produced
			MeV	hr	in one run
					at EOB, <i>Ci</i>
Sr-82	25.5 d	Rb	100-40	250	5
Na-22	2.6 y	Mg, Al	150-35	250	2
Cd-109	453 d	In	150-80	250	2
Pd-103	17 d	Ag	150-50	250	50
Ge-68	288 d	Ga, GaNi	50-15	250	0.5
Sn-117m	14 d	Sb, TiSb	150-40	250	3
Se-72	8.5 d	GaAs	60-45	250	3
Cu-67	62 hr	Zn-68	150-70	100	10
Cu-64	12.7 hr	Zn	150-40	15	15
Ac-225	10 d	Th	150-40	250	4
Ra-223	11.4 d	Th	150-40	250	13

Green – regular mass production

Blue – technology developed, test samples supplied to customers

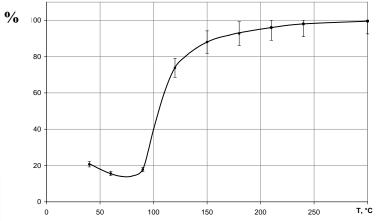

Red – production method developed, technology under development

Production and Transportation Scheme of Strontium-82

Processing of INR metallic rubidium target for recovery strontium-82 at Los Alamos (successful GIIP project INR with LANL)


Total amount of irradiated and shipped target: more than 100

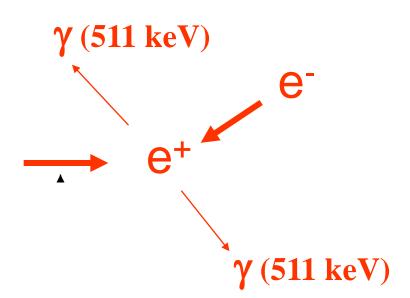
Existing Accelerator Facilities for Radioisotope Production at High Intensity Proton Beam of Middle Energy

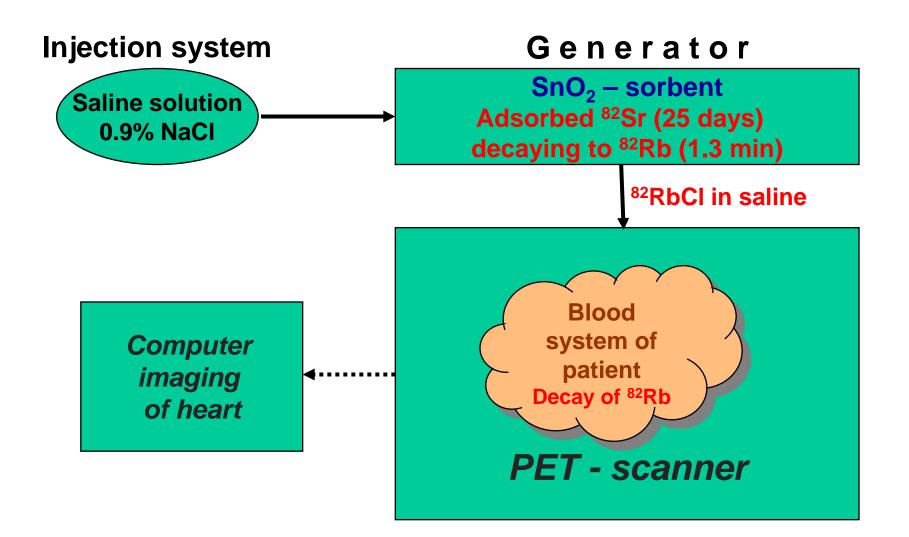

- Brookhaven National Laboratory (NY, USA) 200 MeV, 100 μA
- Los Alamos National Laboratory (NM, USA) 100 MeV, 200 μA
- TRIUMF (Vancouver, Canada) 110 MeV, 70 μA
- iThemba Laboratory (Cape Town, South Africa)
 66 MeV, 150 µA
- Institute for Nuclear Research (Troitsk, Russia) 160 MeV, 120 μA

(Regular beam currents on typical targets)

Virtual Isotope Center- supplementing and extending existing availability

Radiochemical facility based on a new technology of strontium-82 sorption directly from liquid metallic rubidium (in hot cells at IPPE, Obninsk)


Temperature dependence of Sr-sorption

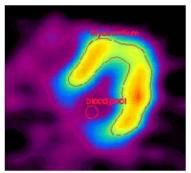

Short-lived radionuclides used in PET

- 18 F (110 min)
- ¹⁵O (2 min)
- ¹³N (10 min)
- ¹¹C (20 min)
- ⁸²Rb (1.3 min) ↑ ⁸²Sr (25.5 d)

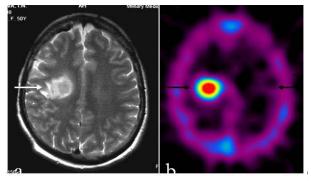
• ⁶⁸Ga (68 min) † ⁶⁸Ge (271 d)

Principle of Operation with ⁸²Sr/⁸²Rb- Generator: an alternative of ¹³N and ^{99m}Tc in some cases

CardioGen-82® US Sr/Rb-82 Generator (10/30 kG, 100-120 mCi, 28-day operation) RECALL in July 2011 GR-01 Russian Sr/Rb-82 Generator in tungsten container (21/38 kG, 50-160 mCi, 60-day operation)

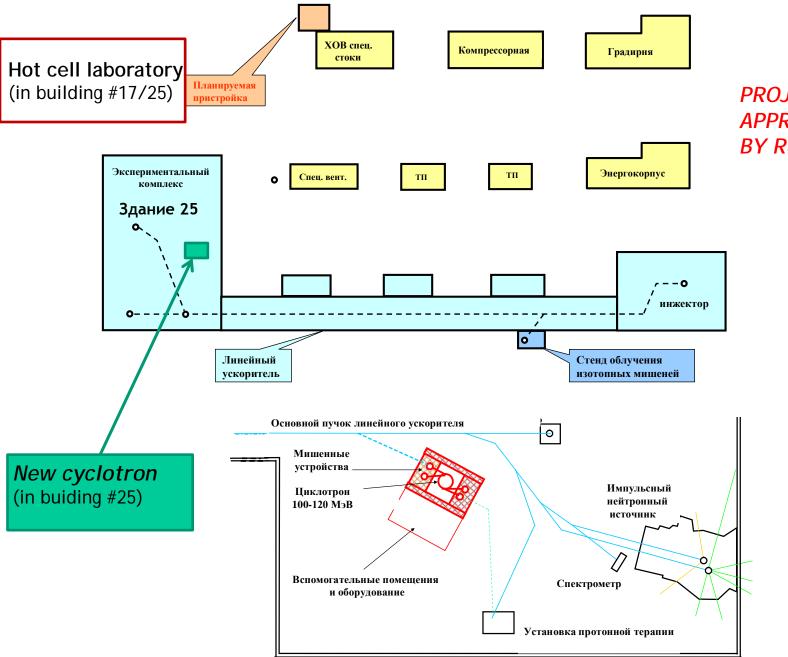


Preclinical and clinical tests of Russian Sr/Rb-82 generator for cardio diseases at PET facility in Center of Radiological and Surgery Technologies, St. Petersburg



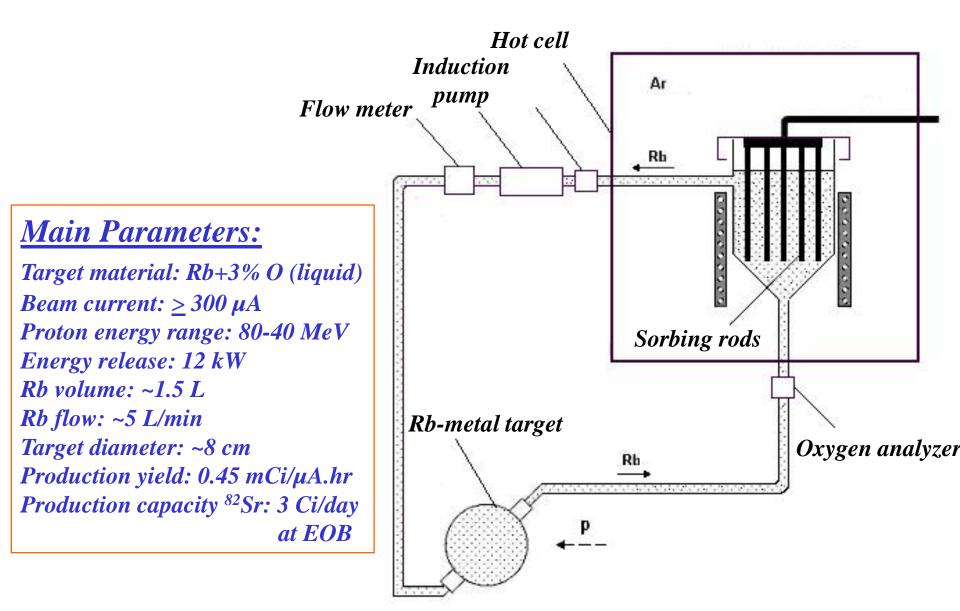
Heart of the first patient

Ameboid glioma of right parietal lobe

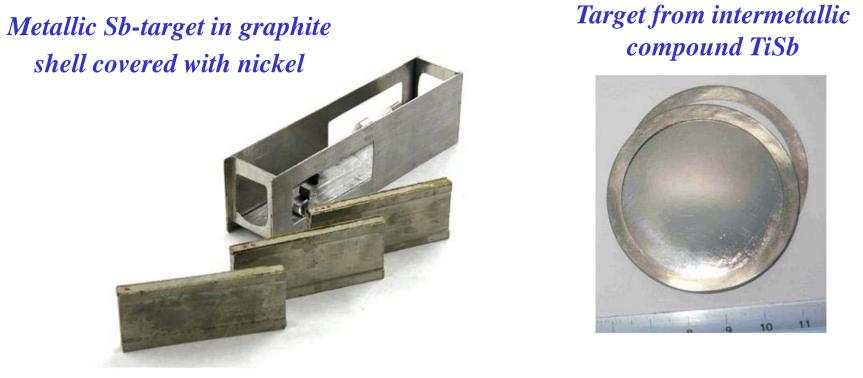


More than 150 patients have been treated within the clinical trials
Expected approval for routine use in Russia: December, 2011
6 PET centers only in Russia are ready to consume; 31 – in near future

Proposed Accelerator Facilities for Radioisotope Production at High Intensity Proton Beam of Middle Energy


- ARRONAX/IBA (Nantes, France) H⁻ Cyclotron - 70 MeV, 2x375 μA
- Institute for Nuclear Research (Troitsk, Russia) H⁻Cyclotron - 120 MeV, 1000 μA: production of ⁸²Sr, ^{117m}Sn, ²²⁵Ac, ²²³Ra
- Petersburg Nuclear Physics Institute H⁻ Cyclotron - 80 MeV, 100-200 μA, Isotope separator facility: ⁸²Sr from Y-target
- Institute for Nuclear Research of National Academy of Sciences of Ukraine (Kiev) H+ Cyclotron, 70 MeV, 100 µA (⁸²Sr production from RbCl-target)
- Legnaro National Laboratory, INFN (Padova, Italy) Cyclotron - 70 MeV, 2x400 µA
- Positron Corporation (Illinois, USA) H⁻ Cyclotron - 70 MeV, 2x375 μA: ⁸²Sr production
- Proton Engineering Frontier Project (Gyoungju, South Korea) LINAC - 100 MeV, >300 μA
- National Institute for Radioelements, IRE and IBA (Belgium) Cyclotron - 350 MeV, 1000 µA (Ta-target to produce neutrons for ⁹⁹Mo)
- TRIUMF (Vancouver, Canada) Existing H⁻ cyclotron - 500 MeV. Isotope separator facility: ⁹⁹Mo from ⁹⁸Mo-targets

Existing and future installations for isotope production at INR


PROJECT APPROVED BY RUSNANOTECH

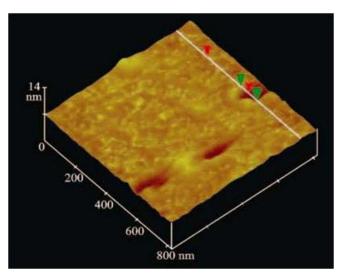
Prospect Facility for On-Line Sr-82 Production

Production ^{117m}**Sn** from antimony targets ^{121,123}**Sb** (p; 2p xn) ^{117m}**Sn**

 $T_{1/2}$ =14.0 d Low energy conversial Auger-electrons 127 and 152 keV Range in water: 0.22 и 0.29 mm

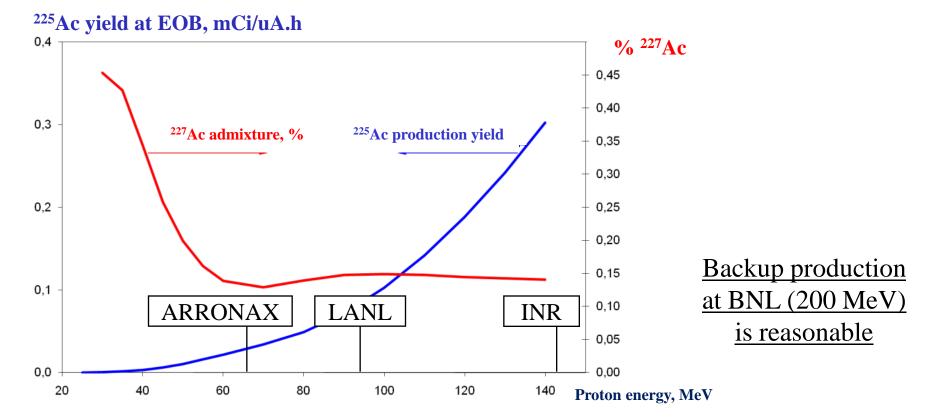
Mutual development of INR and BNL, USA (S. Srivastava et al.) with participation of MSU (Moscow) and IPPE (Obninsk), supported by GIPP foundation

Application of a-active actinium-225 and radium-223 for therapy of oncology diseases: directly or via short-lived bismuth-213 and lead-211


•Prostate cancer, mammary gland, brain, bone, stomach, pancreas, ovaries cancer

•Melanoma

•Celothelioma


•Leukemia

By Institute of Gene Biology of RAS – A.S.Sobolev et al.

The radionuclides are incorporated into artificial modular NANOTRANSPORTERS (platforms) of polypeptide structure providing the address delivery of the radionuclide to the cells and the given cell component, e.g., to nucleus

Production of ²²⁵Ac from nat. Th irradiated with protons

Potential production at 160 MeV (at customer's calibration time):

2 Ci per week ²²⁵Ac after 10-day decay (current world production is about 0.15 Ci per month)

4 Ci per week ²²³Ra after 16-day decay

Possibility of Medical Isotope Production at INR

RADIO-		HALF-	ANNUAL PRO	PATIENT	
NUCLIDE	APPLICATION	LIFE	Linear accelerator	New cyclotron	AMOUNT (per year)
⁸² Sr	PET- diagnostics (cardiology)	25 d	30	400	500 000
^{117m} Sn	Therapy, γ-diagnostics (bone cancer, cardio vascular disease)	14 d	10	30	1 000
⁶⁷ Cu	Therapy (oncology)	62 h	20	100	1 000
⁶⁴ Cu	Therapy, PET- diagnostics (oncology)	12.7 h	150	700	1 000
⁷² Se	PET- diagnostics (oncology)	8.5 d	15	60	80 000
¹⁰³ Pd	Therapy (cancer of prostate, liver, mammary gland, rheumatoid arthritis)	17 d	200	800	10 000
²²⁵ Ac	Therapy (oncology)	10 d	8	100	100 000
²²³ Ra	Therapy (bone cancer)	11.4 d	20	500	300 000

Problems to be Solved in Isotope Production and Investigations

- **1. Efficient international collaboration**
- 2. Government funding is necessary
- **3.** Disposition of funds for R&D: overcoming agency barriers

4. Enough qualified and independent international committee for distribution of funds in realization of isotope projects is necessary

- **5. Improvement the system for transportation logistics**
- **6.** To reduce bureaucratic regulations (not reducing safety)

7. Severely growing rates for electricity power, heat, leasing, wastes management, etc.

THANK YOU !