

Università degli Studi di Milano

6.41 s

1.911 h

Lu-177g produced with high specific activity by deuteron irradiation for metabolic radiotherapy

M.L. Bonardi¹, A. Gandini, L. Gini², F. Groppi¹, S. Manenti^{1*}

¹Physics Department of Università degli Studi di Milano and INFN of Milano, L.A.S.A. Laboratory, ITALY ²INFN of Milano, L.A.S.A. Laboratory, ITALY

GOAL

As an alternative method to the

reactor production of ¹⁷⁷gLu, the deuteron activation on thin

and thick foils of natural Yb

with a cyclotron was studied.

The routes of interest are the

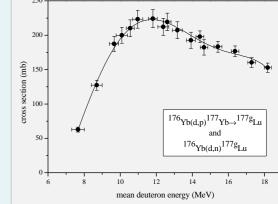
indirect reaction

 $\frac{176}{\text{Yb}(d,p)}$ ¹⁷⁷Yb \rightarrow $\frac{177}{\text{gLu}}$

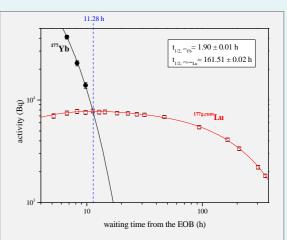
via β⁻ decay of ¹⁷⁷Yb

and the direct reaction ¹⁷⁶Yb(d,n)^{177(g+m)}Lu.

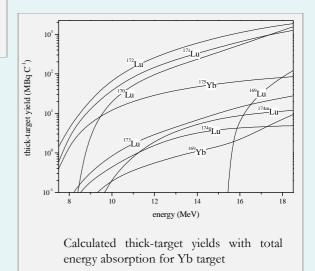
INTRODUCTION


¹⁷⁷gLu is a low energy β⁻ emitter that thanks to its favorable decay properties ($T_{1/2} = 6.734$ d, β⁻ emission 100%, max $E_{β^-} = 489.3$ keV, $< E_{β^-} > = 163$ keV, $E_{γ} = 208.4$ keV) is one of the most promising RNs for metabolic radiotherapy of cancer of small dimensions. The production of ¹⁷⁷gLu is carried out mainly in nuclear reactors in by using either targets of Lu or Yb: in the first case ^{177(g+m)}Lu is produced in *carrier-added* (CA) form by (n,γ) reaction on enriched ¹⁷⁶Lu leading to a low specific activity A_s compared to the theoretical *carrier-added* (NCA) form by (n,γ) reaction on enriched ¹⁷⁶Yb followed by β⁻-decay leading, after separation of Lu from Yb, to a higher A_s than in previous case. This latter case shows also evidence of no production of the long-lived impurity ^{177m}Lu.

^{177m2}Hf 51.4 m


^{177m1}Hf 1.08 s

stable


¹⁷⁷Hf

Reaction cross-section for the (cumulative) production of $^{177\mathrm{g}}\mathrm{Lu}$

Decay curve of 177 Yb and the growing and decay curve of 177 g,dirLu, obtained from the measurement of the Yb target irradiated at 14.65 MeV for two hours.

105 hick-target yield (MBq C¹) 10^{4} Calculated thick-target yields with total energy absorption 10^{3} for 100 % 176Yb enriched target. 177mLu yield is lower than 0.0045 % of 177gLu yield, 10^{2} after an irradiation time of 2 h. 10¹ žI u 10 10 12 14

Simplified Decay Scheme of ¹⁷⁷Yb and ¹⁷⁷Lu

¹⁷⁷gLu

160.4 d

6.734 d

incident beam energy (MeV)

EXPERIMENTAL RESULTS

• The analysis of the growth curve of cumulative ${}^{177g}Lu$ leads to conclusion that the preferred route for the production of ${}^{177g}Lu$ is via the indirect reaction ${}^{176}Yb(d,p){}^{177}Yb \rightarrow {}^{177g}Lu$, with the direct reaction ${}^{176}Yb(d,n){}^{177(g+m)}Lu$ being observable only above 11 MeV.

• No gamma lines of $^{177\rm m}Lu$ were seen. From the detection limit it follows that the activity of $^{177\rm m}Lu$ in less than 0.0045% of the ^{177}Lu activity at EOB.

• The deuteron activation for 12 hours of a thick target of ¹⁷⁶Yb (100% enriched) with $E_{in} = 12.5 \text{ MeV}$, $\Delta E = 10.0 \text{ MeV}$, $I = 100 \mu A$ can produce up to 10 GBq of cumulative ¹⁷⁷gLu.