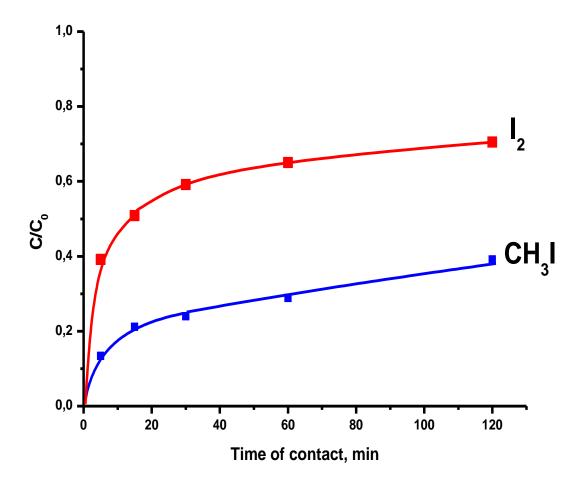
CONVERSION OF I₂ IN IONIC FORMS ON THE COMPOSITE MATERIALS "FIZKHIMIN"<sup>™</sup> IN WATER COOLANT AT NUCLEAR POWER PLANTS.

> Prof. Sergey A. Kulyukhin Dr. Lubov' V. Mizina Dr. Natalya A. Konovalova Eng. Igor' A. Rumer Dr. Elena P. Krasavina


Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences Moscow, Russia

### I<sup>-</sup>, IO<sub>3</sub><sup>-</sup>, I<sub>2</sub>, CH<sub>3</sub>I

### Anion- and cationion-exchange resins

**KU-2** and **AV-18** 

#### The absorption of I<sub>2</sub> and CH<sub>3</sub>I on anion-exchange resin AV-18 from the water coolant of WWER-type NPPs<sup>\*</sup>



\* The water coolant of the WWER-type NPPs: [NaCl] =  $1.17 \text{ mg/dm}^3$ ; [NH<sub>4</sub>Cl] =  $29.96 \text{ mg/dm}^3$ ; [H<sub>3</sub>BO<sub>3</sub>] =  $5 \text{ g/dm}^3$ ; pH 7 - 8.5

## Distribution coefficients K<sub>d</sub> for I<sub>2</sub> and CH<sub>3</sub>I on anion-exchange resin AV-18 from the water coolant of WWER-type NPPs

| NN | Time of contact<br>between solid and<br>liquid phases | K <sub>d</sub> , cm³/g |                   |  |
|----|-------------------------------------------------------|------------------------|-------------------|--|
|    |                                                       | I <sub>2</sub>         | CH <sub>3</sub> I |  |
| 1  | 15 min                                                | 103.5 ± 3,0            | 12.9 ± 0,6        |  |
| 2  | 60 min                                                | 145.1 ± 4,5            | 30.2 ± 1,4        |  |
| 3  | 120 min                                               | 244.5 ± 6,1            | 41.9 ± 1,7        |  |
| 4  | 24 h                                                  | >103                   | 182.7 ± 3,4       |  |

\* The water coolant of the WWER-type NPPs:

 $[NaCl] = 1.17 \text{ mg/dm}^3; [NH_4Cl] = 29.96 \text{ mg/dm}^3; [H_3BO_3] = 5 \text{ g/dm}^3; \text{pH 7 - 8.5}$ 

#### Aim of the work is to develop a new effective material to absorb molecular and organic iodine from water solutions

It is desirable to employ materials that are used on working NPPs to coolant decontamination

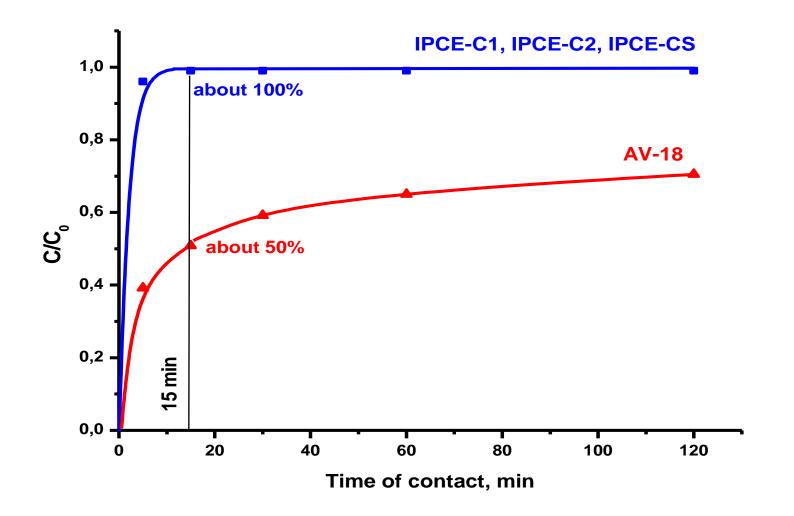
#### Ion-exchange resin - KU-2

# Some characteristics of the new materials based on cation-exchange resin KU-2

|          | Quantity of<br>d-elements on cation-<br>exchange resin KU-2 |              | Colour                 |  |
|----------|-------------------------------------------------------------|--------------|------------------------|--|
| Material | mg/g                                                        | % wt.        |                        |  |
| IPCE-C1  | 79.93<br>81.28                                              | 8.0<br>8.1   | brown with metal gloss |  |
| IPCE-C2  | 55.69<br>54.68                                              | 5.6<br>5.5   | brown with metal gloss |  |
| IPCE-CS  | 99.82<br>103.02                                             | 10.0<br>10.3 | grey                   |  |

- **IPCE-C1** about 8.0 wt.% of Cu
- IPCE-C2 about 5.5 wt.% of Cu
- **IPCE-CS** the total content of metals about 10.0 wt.% at molar relation Cu : Ag = 4 : 1

## Distribution coefficients K<sub>d</sub> for <sup>131</sup>I<sup>-</sup>, <sup>131</sup>IO<sub>3</sub><sup>-</sup>, CH<sub>3</sub><sup>131</sup>I and I<sub>2</sub> on the modified resin KU-2 from a water coolant of the WWER-type NPPs<sup>\*</sup>


 $(V/m = 100; [K^{131}IO_3] = 10^{-5} M; [K^{131}I] = 10^{-5} M; [CH_3^{131}I] = 10^{-5} M; [I_2] = 9.10^{-4} M$ Time of contact between liquid phase and material is 120 min)

| NN | Material | K <sub>d</sub> , cm³/g            |                                         |                               |                                  |
|----|----------|-----------------------------------|-----------------------------------------|-------------------------------|----------------------------------|
|    |          | <sup>131</sup> <b>I</b> -         | <sup>131</sup> <b>IO</b> 3 <sup>-</sup> | I <sub>2</sub>                | CH <sub>3</sub> <sup>131</sup> I |
| 1  | KU-2     | -                                 | -                                       | $\textbf{1.5}\pm\textbf{0.4}$ | $\textbf{1.5}\pm\textbf{0.4}$    |
| 2  | IPCE-C1  | 21.2 ± 2.0                        | $\textbf{36.4} \pm \textbf{1.6}$        | (2.1 ± 0.9)·10 <sup>3</sup>   | $\textbf{8.5} \pm \textbf{1.3}$  |
| 3  | IPCE-C2  | $\textbf{150.0} \pm \textbf{5.5}$ | 41.2 ± 2.7                              | (2.3 ± 0.8)·10 <sup>3</sup>   | 8.5 ± 1.3                        |
| 4  | IPCE-CS  | 136.0±5.0                         | 35.2 ± 1.9                              | (2.3 ± 1.0)·10 <sup>3</sup>   | $\textbf{10.6} \pm \textbf{1.4}$ |

\* The water coolant of the WWER-type NPPs:

 $[NaCl] = 1.17 \text{ mg/dm}^3; [NH_4Cl] = 29.96 \text{ mg/dm}^3; [H_3BO_3] = 5 \text{ g/dm}^3; \text{pH 7 - 8.5}$ 

#### Dependence of I<sub>2</sub> sorption on the time of contact between solid and liquid phases



# THANK YOU !

