

Gain Layer fabrication

For Picosecond Avalanche Detectors (PicoAD) implemented in Monolithic Active Pixel Sensors (MAPS)

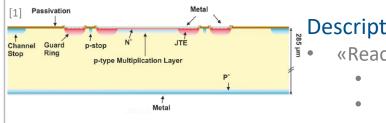
Elviretti, Matteo

05.09.2022

IHP – Leibniz-Institut für innovative Mikroelektronik

Agenda	

1 Introduction	1	
2 Processing		
3 Experiments	<u> </u>	
4 Conclusion		


Т

Introduction

Avalanche Diodes

Description

- «Reach-through» structure with p-type layer just below n+ electrode
 - Multiplication layer underneath the pixel
 - Lightly-doped absorption layer

Challenges

- 1. Strong variation of electric field at pixel edge
 - Requirement of introducing discontinuities in multiplication layer
- 2. Charge-collection noise
 - Intrinsic time jitter •

Solutions

- 1. Increasing pixel size
- Thinning the avalanche diode 2.

1 Introduction

PicoAD

[2]		
N	N	N
	P-	
	N	
	P-	~P
	P+	

Description

•

- Multi –junction monolithic silicon pixel detector
- (NP)_{pixel}(NP)_{gain} structure
 - 1st epitaxial layer: Primary absorption region;
 - Gain Layer: Uniform deep NP junction;
 - 2nd epitaxial layer: Drift region

Advantages

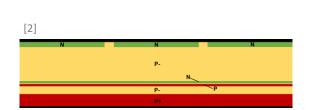
- Gain layer far from the pixels
 - Less subject to strong variation of the electric field
 - Continuous gain layer
 - It removes the inter-pixel zones of degraded time resolution
- Absorption region arbitrarily thin
 - Reduces charge-collection noise
 - Does not increase significantly pixel capacitance

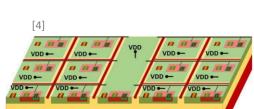
05.09.2022

2.2 Processing

Current concept 2nd epitaxy 1st epitaxy on low ohmic Gain layer implantation SG13G2 IHP process substrate Large collection electrode with circuitry Gain laver Gain laver Substrate Substrate Substrate Substrate B and As implantation 3 to 5 µm epitaxy 15 to 25 µm epitaxy

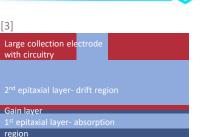
Challenges/issues: Wafer flatness after 2nd epi might be not sufficient for litho processes of 130nm CMOS Non-negligible risk of introducing defects on the surface of the thicker epitaxial drift layer Time consuming when done with IHP dichlorsilane-based process at 850°C


05.09.2022


Substrate

IHP contribution

1st and 2nd epitaxies (low T tool at IHP) Gain layer implantation SG13G2 BiCMOS process 50 μm epi layer (Globitech) Pre-process polishing SG13G2 BiCMOS process 1st and 2nd epitaxies (Globitech) Masked gain layer implantation SG13G2 BiCMOS process (yet to be started)


6

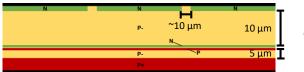
-HV

ATTRACT MONPicoAD

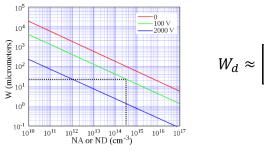
N	N	N
	P-	
	N_	
	P-	P
	P+	

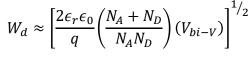
Structure

- Heavily p-doped substrate (0.1 Ωcm)
- 5 μm thick epitaxial layer (absorption region)
- Masked gain Layer (with litho marks)
- 10 μm epitaxial layer (drift region)
- IHP 130 nm SiGe BiCMOS front-end electronics and pixels
- Metallization



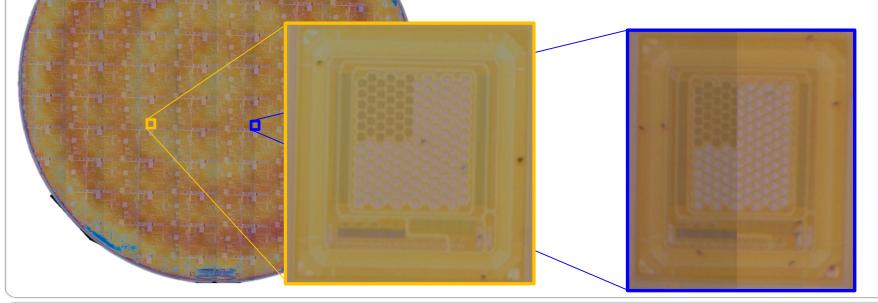
ATTRACT MONPicoAD: Epitaxies


Dichlorsilane-based epitaxy:


- 1st epitaxy on a low resistivity B-doped substrate
 - 5 μm B-doped (3x10¹⁴ cm⁻³) layer

• 2nd epitaxy after gain layer implantations

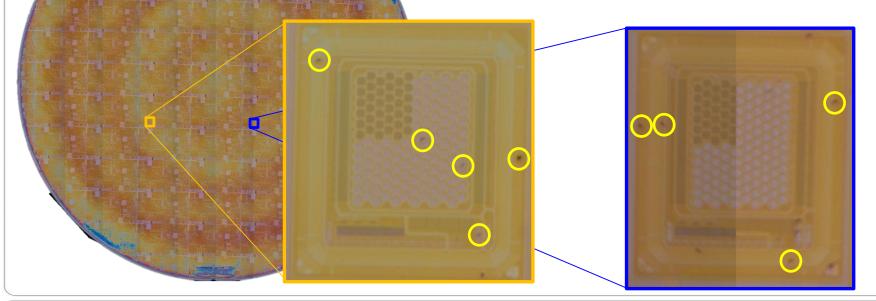
10 μm B-doped (3x10¹⁴ cm⁻³) layer



ATTRACT MONPicoAD: Epitaxies

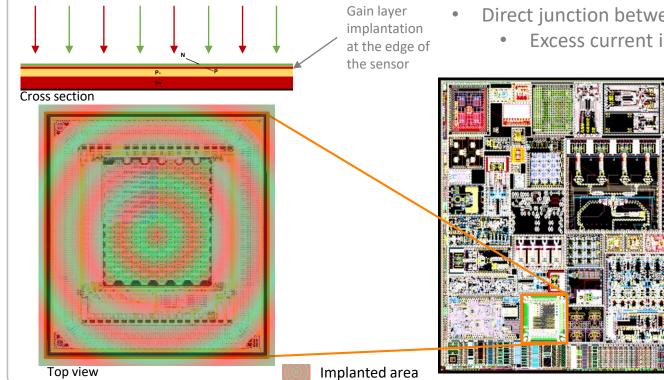
Disadvantages:

- Time consuming
- Risk of introducing defects



ATTRACT MONPicoAD: Epitaxies

Disadvantages:

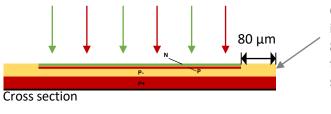

- Time consuming
- Risk of introducing defects

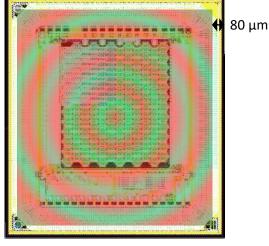
3.1 Experiments

ATTRACT MONPicoAD: Gain Layer

Challenges

- Direct junction between drift and gain region
 - Excess current in device may be produced


www.ihp-microelectronics.com | © IHP all rights reserved


11

ATTRACT MONPicoAD: Gain Layer

Gain layer implantation 80 µm far from edge of sensor

Challenges

- Direct junction between drift and gain region
 - Excess current in device may be produced

Solution

- A mask is used for implantation
 - Gain layer ends 80 μ m far from chip edge
 - Dedicated litho marks processed after 1st epi

Top view

Implanted area

FASER monolithic pixel sensor

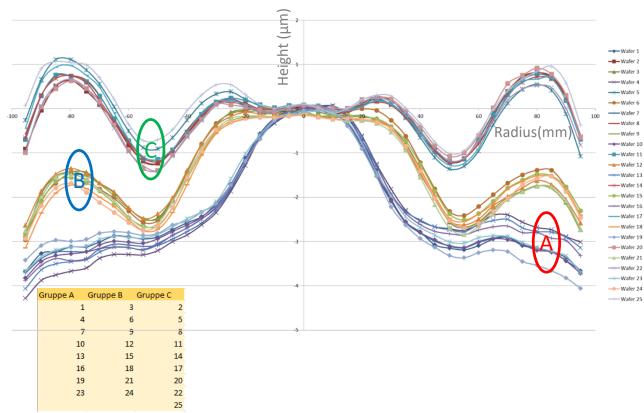
Structure

• Heavily p-doped substrate

- ~46 μ m thick epitaxial layer (ρ =200÷500 Ω cm)
- ~4 μ m thick epitaxial layer (ρ =15÷25 Ω cm)

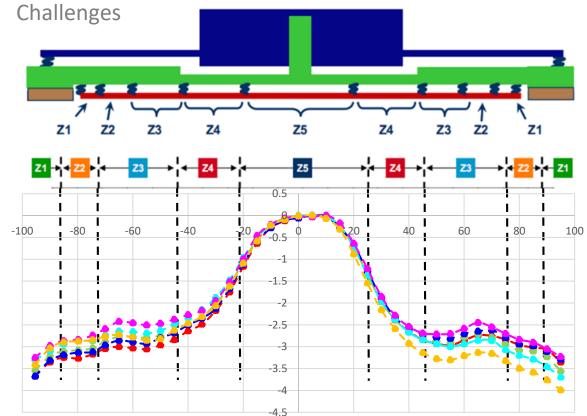
Epi2 P/Boron/Res 16.44-24.54/Thk 3.57-3.92

Epi1 P/Boron/Res 286.99-430.25/Thk 43.94-48.55


Sub: 200mm/<100>/P/Boron/Res 0.7-1.1/Thk 660-690

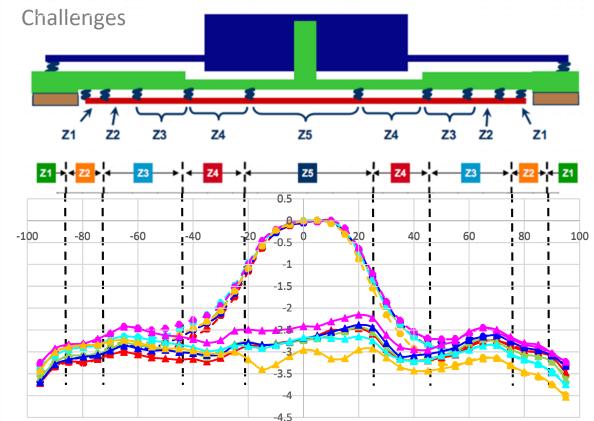
- Front-end electronics and pixels
- Metallization

Challenges


Global Wafer flatness

.....

- measured through autofocus feature of Nikon litho tool
- 3 profile groups individuated
 - 3 AMAT Centura epi reactor chambers
- Not sufficient for litho processes of 130nm CMOS



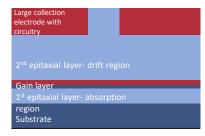
Chemical Mechanical Polishing

- Mirra Mesa from AMAT
 - 5 different pressure zones
 - Proper recipes for each zone

Outcome

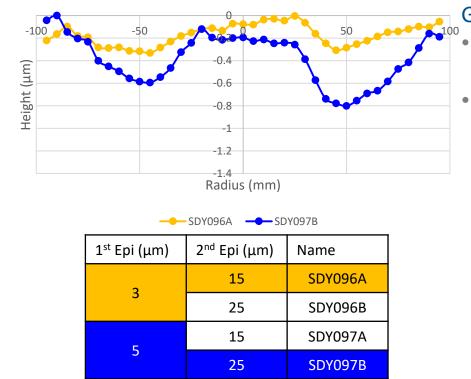
PCM Measurements in spec

Solution


- Better epi homogeneity
 - wafer-to-wafer
 - only one chamber
 - across-wafer
 - Thinner epi layer

16

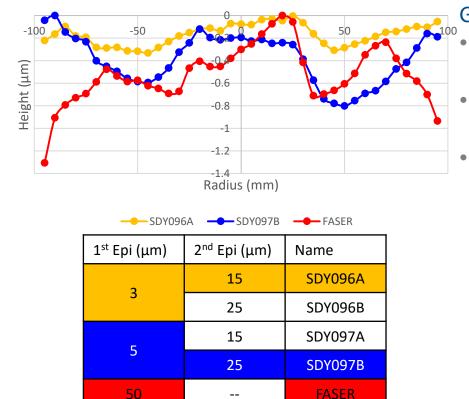
PicoAD sensor


Structure

- Heavily p-doped substrate
- 3÷5 μm thick epitaxial layer (absorption region)
- Masked gain Layer (no litho marks)
- 15÷25 μm epitaxial layer (drift region)
- IHP 130 nm SiGe BiCMOS front-end electronics and pixels
- Metallization

PicoAD sensor: Epitaxies

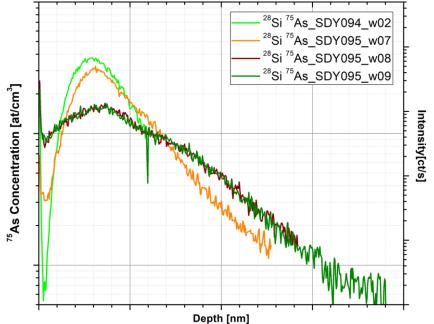
Global Wafer Flatness



- Thinnest epitaxies (1st=3µm; 2nd=15µm)
 - Most critical slope of 18.2 nm/mm
- Thickest epitaxies (1st=5µm; 2nd=25µm)
 - Most critical slope of 49.6 nm/mm

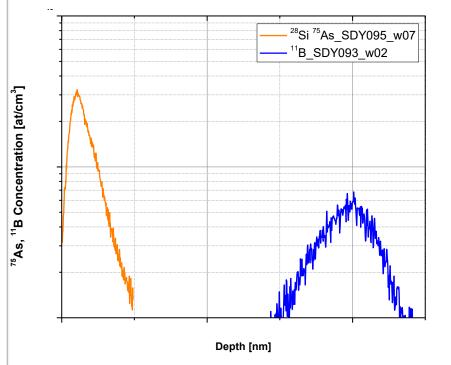
PicoAD sensor: Epitaxies

Global Wafer Flatness



- Thinnest epitaxies (1st=3µm; 2nd=15µm)
 - Most critical slope of 18.2 nm/mm
- Thickest epitaxies (1st=5µm; 2nd=25µm)
 - Most critical slope of 49.6 nm/mm
- FASER succesfully processed wafer
 - Most critical slope of 65.9 nm/mm

PicoAD sensor: Gain Layer



Constraints

- As surface concentration
 - Upper limit
 - Globitech requirement (reactor chamber contamination)
 - Lowest possible
 - To minimize outdiffusion

PicoAD sensor: Gain Layer

Constraints

- As surface concentration
 - Upper limit
 - Globitech requirement (reactor chamber contamination)
 - Lowest possible
 - To minimize outdiffusion
 - Upper limit in energy for the B implantation

PicoAD sensor: Gain Layer

15um 2nd epi:

Thickness 2nd epi	Thickness 1st epi	As gain layer doses	name	Lot	Slots (as processed)	Zeilen
		3		SDY096	W01-06	1,4,7,10
15um (25 w)	3um (12 w)	3.5				2,5,8,11
		4	(6 w)			3,6,9
		2.5			W07-12	1,4,7,10
		2.5				2,5,8,11
		4.5	(6 w)			3,6,9
		3		SDY097	W01-07	1,4,7,10
	5um (13 w)	3.5				2,5,8,11
		4	(7 w)			3,6,9
		2.5			W08-13	1,4,7,10
		2.5				2,5,8,11
		4.5	(6 w)			3,6,9

25um 2nd epi: Thickness 1st epi As gain layer doses name Thickness 2nd epi Lot Wafers Zeilen Δ SDY096 W13-18 1,4,7,10 2,5,8,11 25um (24 w) 3um (12 w) 4.5 5 (6 w) 3,6,9 3.5 W19-24 1,4,7,10 3.5 2,5,8,11 4.75 (6 w) 3.6.9 Δ SDY097 W14-19 1,4,7,10 5um (12 w) 5 2,5,8,11 5 (6 w) 3,6,9 3.5 W20-25 1,4,7,10 3.5 2,5,8,11 4.75 (6 w) 3,6,9

49 Wafers

- 25 wafers -> 15 μm 2nd epi
 - 12 wafers -> 3 μm 1st epi
 - 13 wafers -> 5 μm 1st epi
 - 3 gain layer variants each wafer
- 24 wafers -> 25 μm 2nd epi
 - 12 wafers -> 3 μm 1st epi
 - 12 wafers -> 5 μm 1st epi
 - 3 gain layer variants each wafer

Functional chips delivered Very promising results [2, 5]

Manually controlled CMP needed Measurements ongoing Currently tested in a particle beam μm

-HV

[4]

Functional chips delivered

up to 25 µm Alignment accuracy limited to ~100 BiCMOS process yet to be started

23

Globitech epitaxy can be exploited

region

MONOLIT

Large collection electrode

Substrate

05.09.2022

Gain layer

with circuitry

[2]

Thank you for your attention!

Elviretti, Matteo

IHP – Leibniz-Institut für innovative Mikroelektronik Im Technologiepark 25 D – 15236 Frankfurt (Oder) Phone: +49 (0) 335 5625 346 Fax: +49 (0) 335 5625 e-mail: elviretti@ihp-microelectronics.com

www.ihp-microelectronics.com

Bibliography

[1] – Carulla, M., et al. "50µm thin Low Gain Avalanche Detectors (LGAD) for timing applications." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 924 (2019): 373-379.

[2] – Paolozzi, L., et al. "Picosecond Avalanche Detector--working principle and gain measurement with a proof-of-concept prototype." arXiv preprint arXiv:2206.07952 (2022).

[3] – Münker, M. on behalf of the MONOLITH team «Picosecond time stamping in fully monolithic highly granular silicon pixel detectors" – TRENTO workshop, March 2022

[4] – Paolozzi, Lorenzo, Giuseppe Iacobucci, and Pierpaolo Valerio. "Fast pixel sensors for ionizing particles integrated in SiGe BiCMOS." 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). IEEE, 2020.

[5] – Iacobucci, G., et al. "Efficiency and time resolution of monolithic silicon pixel detectors in SiGe BiCMOS technology." Journal of Instrumentation 17.02 (2022): P02019.