

SiGe BiCMOS Technology

Holger Rücker

Sept. 5, 2022

IHP – Leibniz-Institut für innovative Mikroelektronik

Outline

Motivation

- High-frequency performance of SiGe HBTs
- Next generation BiCMOS technology
- Integration of HBT circuits inside detector pixel
- Conclusions

SiGe BiCMOS combines high-speed HBTs with computing power of digital CMOS

HBTs extend RF performance beyond that of state-of-the-art CMOS

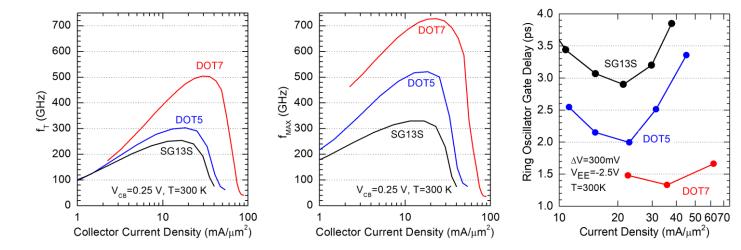
High-volume SiGe BiCMOS applications today:

- High-data-rate optical networks
 - Trans-impedance amplifiers, laser and modulator drivers, clock and data recovery
- Front-end modules for cell phones
 - Amount of SiGe in cell phones strongly increased over last decade
 - Higher integration capability of SiGe BiCMOS compared to competing III-V ICs
- Automotive radar at 77 GHz
 - SiGe dominates the market but CMOS is coming up

Ongoing Demand for Higher Frequencies

Higher frequencies of MMICs facilitate

- Higher communication bandwidth
- Higher special resolution of radar
- THz imaging and sensing in medicine, industry, and science
- Cut-off frequencies (f_{T} , f_{max}) typically 3-10X larger than operating frequency
- Larger design margins, lower noise, higher gain, better linearity
- Lower power consumption
 Iow-cost packaging



.....

Company	f _T	f _{MAX}	CMOS node	Name
Industrial Production				
Infineon	250 GHz	360 GHz	130 nm	B11HFC
ST Microelectronics	320 GHz	370 GHz	55 nm	B55
NXP	260 GHz	350 GHz	180 nm	xHBT2
Global Foundries	300 GHz	360 GHz	90 nm	9HP
TowerJazz/Intel	240 GHz	340 GHz	180 nm	SBC18H4
Low-Volume Fabrication				
IHP	350 GHz	450 GHz	130 nm	SG13G2
IHP (development)	470 GHz	650 GHz	130 nm	SG13G3
www.ihp-microelectronics.com	2 05.09.20	22 5		

EU Projects addressed High-Performance SiGe HBTs

DOTFIVE (2008-2011)

Demonstration of HBTs with 500 GHz f_{MAX}

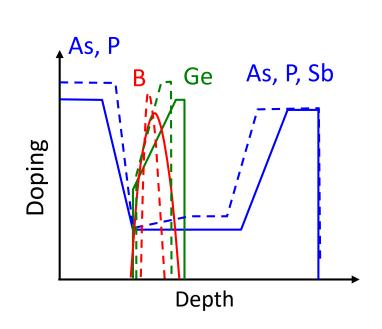
DOTSEVEN (2012-2016)

Demonstration of HBTs with 700 GHz f_{MAX}

TARANTO (2017-2021)

Next generation BiCMOS platforms: ST (55nm), Infineon (90nm), IHP (130nm)

05.09.2022


- Scaling of lateral and vertical device dimensions
- Device and technology concepts suitable for low parasitics
- Utilize materials with low specific resistances and capacitances

Vertical Profile Scaling for Higher f_T

Reduce $W_B \rightarrow low t_B$

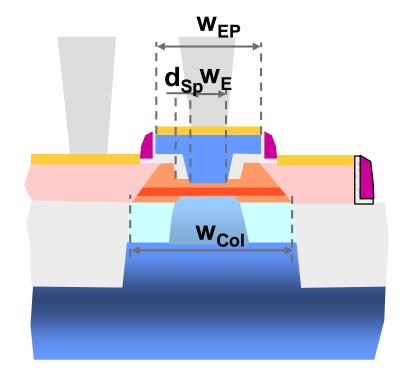
- As-grown $W_B < 5nm$ for $R_{sBi} \sim 2k\Omega$
- Minimize diffusion
- Reduce $W_{BC} \rightarrow low t_{BC}$
- Lower BV_{CBo}
- Higher C_{BC}
- Reduce $W_{EB} \rightarrow Iow C_{diff}$
- Lower BV_{EB0}
- Tunneling

Heavy collector doping \rightarrow low R_C Mono-crystalline emitter \rightarrow low R_E

05.09.2022

W_B

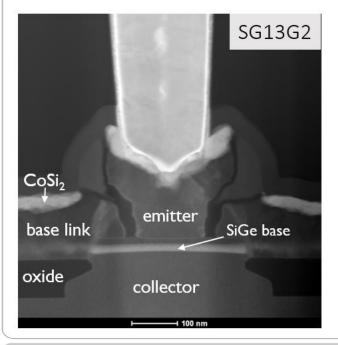
W_{BC}

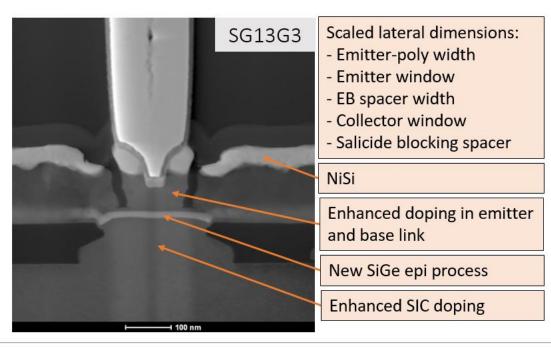

Lateral Scaling for Higher f_{MAX}

But higher R_E , R_C , and R_{Th}

Optimize critical region near emitter

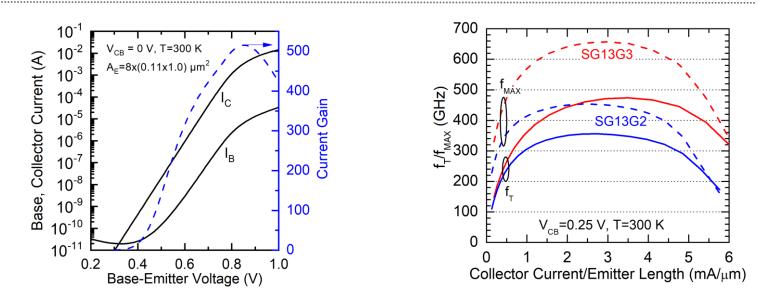
- Smaller emitter-poly w_{EP}
 - Lower R_{Bx}
- Smaller BE spacer d_{SP}
 - Lower R_{Bx}
 - But higher C_{BE,x}
- Smaller collector-window w_{Col}
 - Lower C_{BCx}
 - Effect on R_{Bx} depends on architecture




HBT Technology

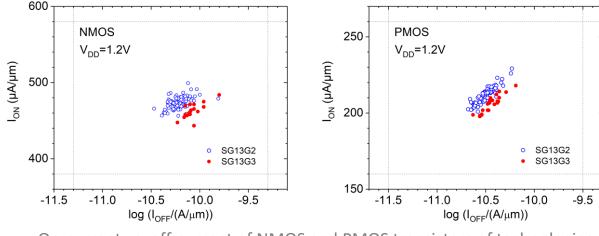
Advances in HBT technology incorporated into new generations of IHPs 130nm BiCMOS

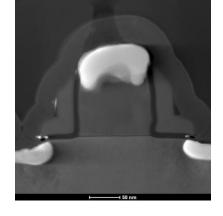
- DOTFIVE-HBT integrated in SG13G2
- DOTSEVEN-HBT integrated in currently developed SG13G3



www.ihp-microelectronics.com | © IHP all rights reserved

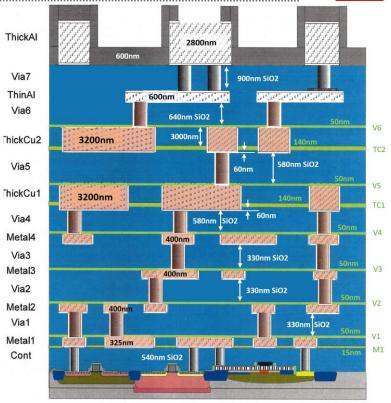
HBT Characteristics




HBTs with aggressively scaled doping profiles show ideal I_C and I_B over wide range of V_{BE}
 Non-ideal I_B at V_{BE} < 0.5 V indicate tunneling through narrow base-emitter junction
 Cutoff frequencies of SG13G3 far beyond predecessor process SG13G2

130-nm CMOS Process

- 1.2V core and 3.3V I/O devices with same specifications in SG13G2 and SG13G3
- Same portfolio of passive components in all three process generations
 - Poly-Si Resistors, MOS varactors, MIM capacitors
 - Thick top metal layers for inductors, transmission lines, and transformers

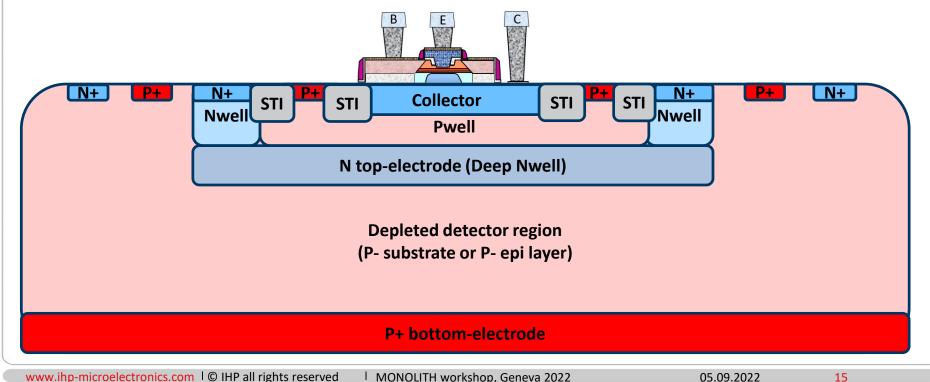

12

On-current vs. off-current of NMOS and PMOS transistors of technologies SG13G2 (blue) and SG13G3 (red). Dashed lines indicate spec limits.

BEOL

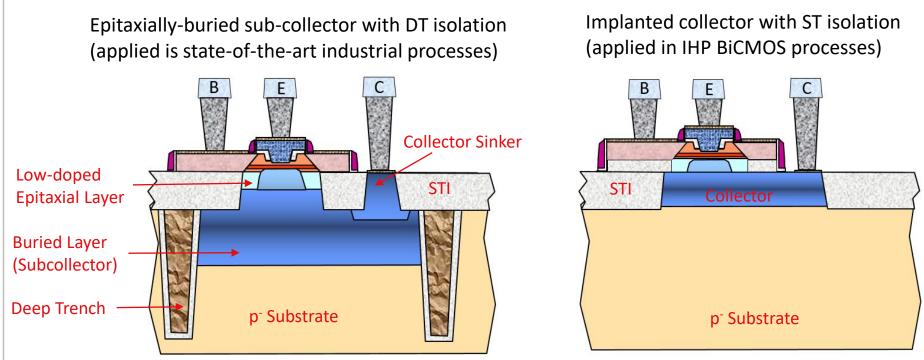
- SG13G3 will be offered with Cu-BEOL in MPW and prototyping service
 - Four thin and two thick Cu layers
 - Two Al top layers
 - Cu-BEOL fabricated at XFAB
- Additional process option with seven-layer Al-BEOL of IHP supports research activities
 - Flexible for integration of new component
 - Research in hetero-integration and postprocessing in IHP pilot line

Passivation: SiON ɛr=6.5 Stop Layer: SiN ɛr=7 Oxide: ɛr=4.1



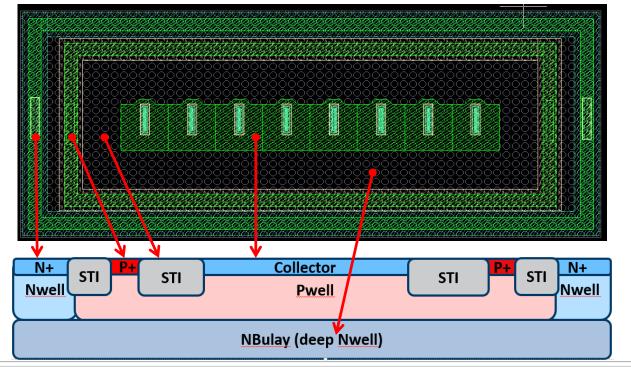
- Performance of new HBT generation benchmarked in early-access fabrication runs of SG13G3 by IHP circuit design groups and external partners
 - 300 GHz low-noise amplifies, [Gadallah, MWW Comp. Lett. 2022]
 - 300 GHz power amplifiers, [Bücher, JSSC 2022]
 - Analog 2:1 Multiplexer with over 110 GHz Bandwidth [Tannert, BCICTS 2021]
 - >150 GBd PAM-4 electrical signal generated with this AMUX by time-interleaving two channels of an commercial arbitrary waveform generator (Schostak et al., EuMW 2022)
 - Distributed amplifier with average gain of 19 dB and over 170 GHz BW [Baeyens, EuMW 2022]

Integration of HBT Circuits inside Detector Pixel


- Transistor regions need to be isolated from top electrode of detector
 - Is it possible to fabricate isolated n-region below HBT collector?

Collector Construction of High-Speed HBTs

16



Shallow collector construction of IHP BiCMOS facilitates fabrication of isolated n-region below collector using Pwell and Deep-Nwell of CMOS process

Isolation of HBT by Layout in Standard Process

ibp

- Draw Nbulay layer over entire HBT
 - Applicable for NPN13P in SG13S and NPN13G2 in SG13G2
 - Pwell will be automatically generated during mask generation for HBTs inside Nbulay

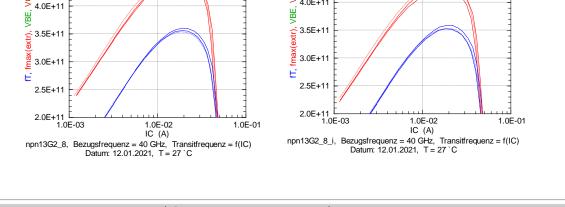
Biasing of Pwell and Nbulay below collector should avoid parasitic bipolar effects

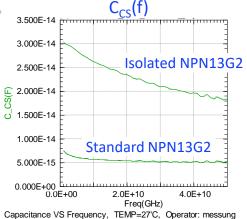
Standard NPN13G2

5.0E+11

4.5E+11

NС


Electrical Characteristics


The Isolated HBTs have enhanced collector-substrate capacitance (Ccs) due to Pwell

Isolated NPN13G2

DC characteristics of the isolated HBTs are identical to the reference HBTs w/o Nbulay

The isolations leaves f_T unchanged, f_{MAX} is slightly reduced due to enhanced C_{CS}

freq sweep: 1E+009(Step: 1E+009Hz)50Hz, Date: 6.02.2018

www.ihp-microelectronics.com | © IHP all rights reserved | MONOLITH workshop, Geneva 2022

5.0E+11

4.5E+11

4.0E+11

05.09.2022

- Continuing interest in SiGe BiCMOS technologies for frequencies and data-rates that are out of reach for state-of-the-art CMOS
- Significant potential for enhanced HBT performance demonstrated in research
- New generation of high-speed HBTs in SG13G3 offers unsurpassed cutoff frequencies f_T of 470 GHz, f_{MAX} of 650 GHz, and BV_{CES}= 3.7 V
 - Early access MPW starts in March 2023
- Moderate complexity of BiCMOS process favors integration of new functions

Thank you for your attention!

Holger Rücker

IHP – Leibniz-Institut für innovative Mikroelektronik Im Technologiepark 25 D – 15236 Frankfurt (Oder)

e-mail: ruecker@ihp-microelectronics.com

www.ihp-microelectronics.com

