

Beam Loading effects in Traveling-Wave structures and its integration in particle tracking

CLIC Beam Physics meeting

Javier Olivares Herrador (BE – ABP – LAF)

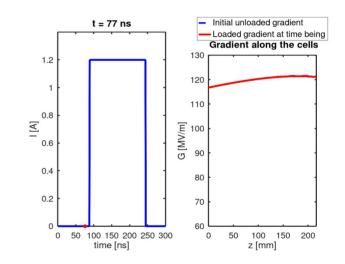
14.07.2022

Objectives

- **PART I:** Understand the beam loading effect
 - Derive a **general PDE** describing energy flow

- **PART II:** Design of a **numerical method** to implement such effect in **RF-Track**
 - General ideas
- **PART III: Assess** the BL collective effect **performance** in RF-Track
 - Concrete examples (CLIC main linac, PETS, HPCI)

VNIVERSITA


PART I: Beam Loading effect description

I. Beam loading effect

- What: Reduction of available accelerating gradient
- Origin: Beam Cavity interaction
 - 1st bunches affect following bunches
- Consequences: Transient response
 - Not all bunches gain/lose same energy

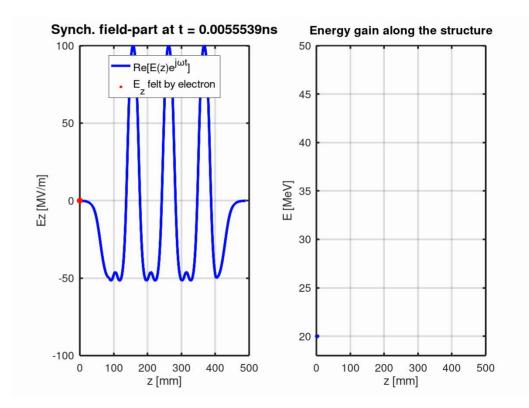
[1] A. Grudiev, A.Lunin, V. Yakovlev. *Analytical solutions for transient and stead state beam loading in arbitrary travelling wave accelerating structures.* Phys. Rev. Special topics **14**, 052001 (2011)

14.07.2022

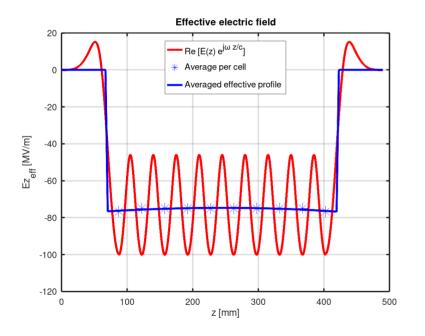
> Theoretical analysis of beam loading effect based on CLIC's main linac [1]

- Motivation: Study of energy conservation \rightarrow Interest in V_{acc}
- Electric field phasorial description [2]:

$$E_z(z,t) = \operatorname{Re}\left[\tilde{E}_z(z)e^{j\omega t}\right]$$

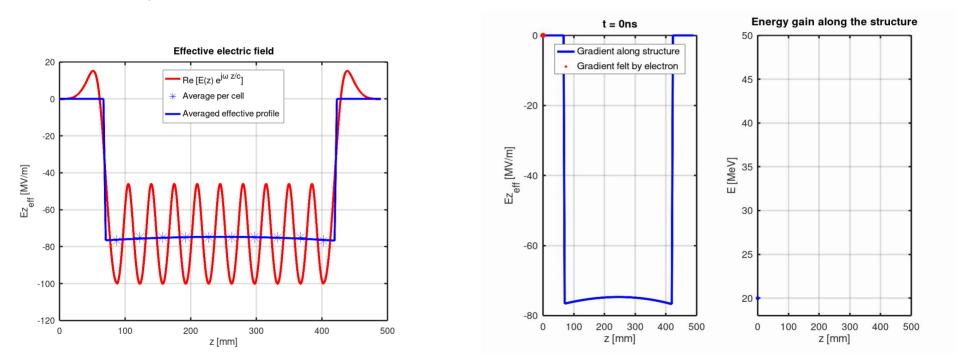

• Accelerating voltage [3,4]:

[2] Jackson, J. D. (1999). *Classical electrodynamics*.
[3] P. Lapostolle. *Linear Accelerators*. North Holland Publishing Company, 1970 (Amsterdam, Holland)
[4] Thomas P. Wangler. *RF linear accelerators*. Wiley-VCH 2008 (Amsterdam, Holland) **Effective** electric field seen by the particle


- From E_z to $E_{z,eff}$
 - Example
 - f = 2.856 GHz
 - <G> = 77 MV/m
 - 9 TW cells + 2 x ¹/₂
 - 2 SW couplers

• From E_{z,eff} to G

14.07.2022


• **Gradient**: **Averaged** electric field *seen* by the particle

• Equivalent tracked energy gain

• Suitable for tracking!

• From E_{z,eff} to G

14.07.2022

- Move to: Transient + Relativistic
- Electric field **quasi-static** phasorial description [5]:

$$E_z(z,t) = \operatorname{Re}\left[\tilde{E}_z(z,t)e^{j\omega t}\right]$$

Transient quasi-static: RF variation >> Amplitude variation

• Accelerating voltage:

$$V_{\rm acc}(k,t,t_0,\beta_0) = \int_{z_k}^{z_{k+1}} \operatorname{Re}[\tilde{E}(z,t)e^{j\omega t_q(z,t,t_0,\beta_0)}] \,\mathrm{d}z$$

Time of flight of a relativistic particle

Effective Gradient $G_{\text{eff}}(k, t, t_0, \beta_0) = \frac{V_{\text{acc}}(k, t, t_0, \beta_0)}{L}$

[5] Venkatasubramanian, V. (1994). Tools for dynamic analysis of the general large power system using time-varying phasors. *International Journal of Electrical Power & Energy Systems*, 16(6), 365-376.

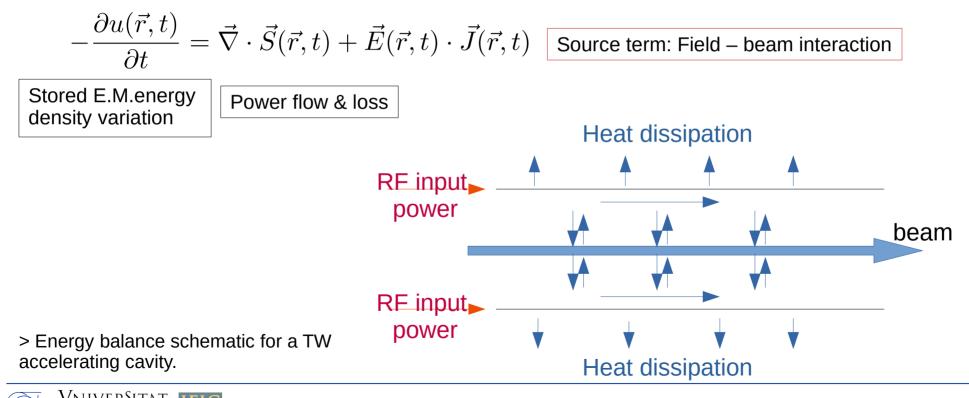
VNIVERSITAT

īðValència

•

- A bit more on synchronism and transient regime
- Time of flight:

$$t_q(z, t_0, \beta(z, t, t_0, \beta_0)) = t_0 + \int_0^z \frac{\mathrm{d}\zeta}{\beta(\zeta, t, t_0, \beta_0)c} \text{ Related to energy gain}$$


• Note that:

$$E_{z}|_{\text{eff}}(z,t,t_{0},\beta) = \operatorname{Re} \begin{bmatrix} \tilde{E}_{z}(z,t)e^{j\omega t_{q}(z,t_{0},\beta(z,t,t_{0},\beta_{0}))} \end{bmatrix} \text{ Use this for simplicity in maths} \\ \neq \\ E_{z}|_{\text{seen}}(z,t,t_{0},\beta) = \operatorname{Re} \begin{bmatrix} \tilde{E}_{z}(z,t_{q}(z,t,t_{0},\beta_{0}))e^{j\omega t_{q}(z,t,t_{0},\beta(z,t_{0},\beta_{0}))} \end{bmatrix}$$

Consistent with the quasi-static assumption

Starting point: Poynting theorem

14.07.2022

- We want: PDE for (G) in the variables z,t.
- We need: Figures of merit
 - Effective shunt impedance per unit length
 - Quality factor

$$r_{e} = \frac{G_{\text{eff}}^{2}}{p_{\text{diss}}} \left[\Omega/\mathrm{m}\right]$$

$$\rho_{e} = \frac{r_{e}}{Q} \left[\Omega/\mathrm{m}\right]$$

$$Q = \omega_{\text{RF}} \frac{w}{p_{\text{diss}}}$$

Group velocity

VNIVERSITAT

DOVALÈNCIA

$$v_g = \frac{P_{\text{flow}}}{w} [\text{m/s}]$$

+ E.M. quantities (p_{diss} , w, P_{flow}) defined at [2,4,6]

[6] CAS Proceedings. Fifth General Accelerator Physics Course. (Jyväskylä, Finland) 1992.

14.07.2022

- Starting point: Poynting theorem
- Manipulation:

VNIVERSITAT

- Time-Average over RF-period \rightarrow Measurability
- Integration over arbitrary volume
- Hypothesis: Paraxial, continuity

14.07.2022

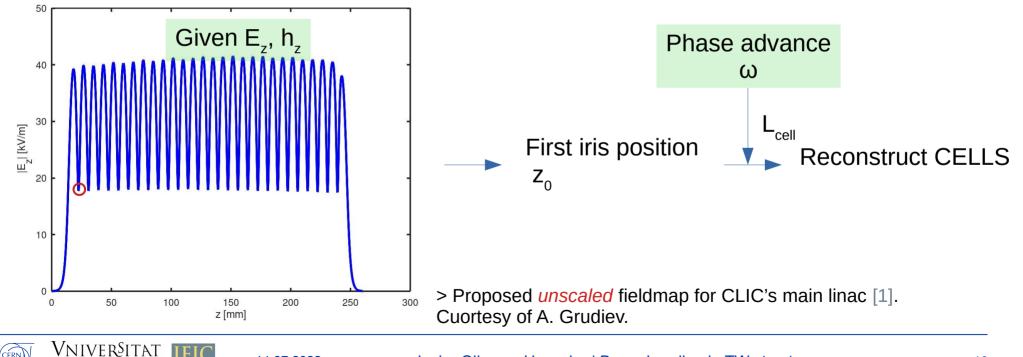
$$-\frac{\partial G}{\partial t} = v_g \frac{\partial G}{\partial z} + \left(-\frac{1}{\rho_e} \frac{\partial \rho_e}{\partial \beta} \frac{\partial \beta}{\partial t} - \frac{v_g}{\rho_e} \frac{\partial \rho_e}{\partial z} + \frac{\omega}{Q} + \frac{\partial v_g}{\partial z}\right) \frac{G}{2} + \frac{\omega \rho_e \tilde{I}}{2}$$

- Linear non-homogeneous $PDE \rightarrow Superposition$

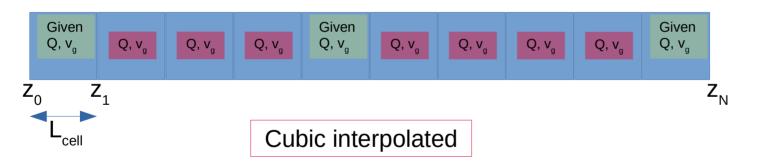
• Ultrarelativistic case: Most common in TW

$$-\frac{\partial G}{\partial t} = v_g \frac{\partial G}{\partial z} + \left(-\frac{v_g}{\rho}\frac{\partial \rho}{\partial z} + \frac{\omega}{Q} + \frac{\partial v_g}{\partial z}\right)\frac{G}{2} + \frac{\omega \rho \tilde{I}}{2}$$

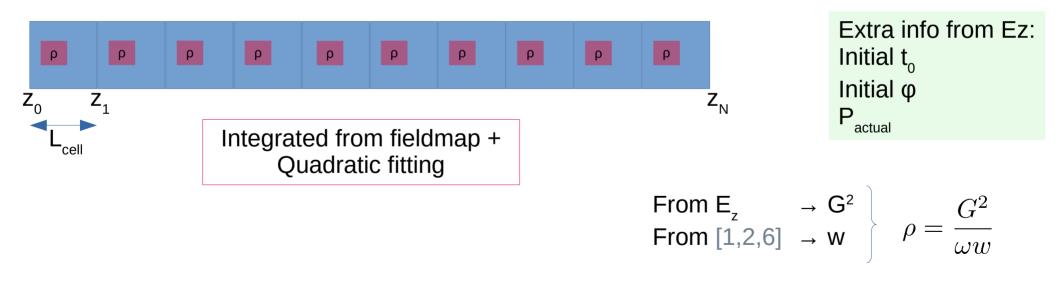
• Matching with [1]



PART II: Numerical implementation

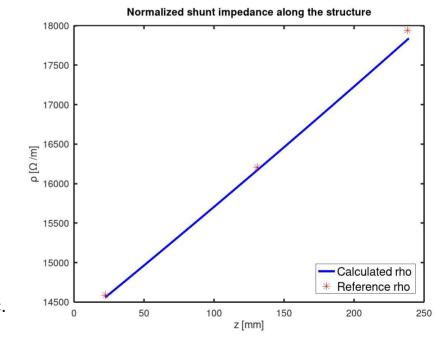


- Finite difference method Require **space** and **time discretization**
- **SPACE**: Mesh with N+1 points N CELLS


- Finite difference method Require **space** and **time discretization**
- **SPACE**: Mesh with N+1 points N CELLS

*If ρ is provided, the similar strategy can be applied.

- Finite difference method Require **space** and **time discretization**
- **SPACE**: Mesh with N+1 points N CELLS

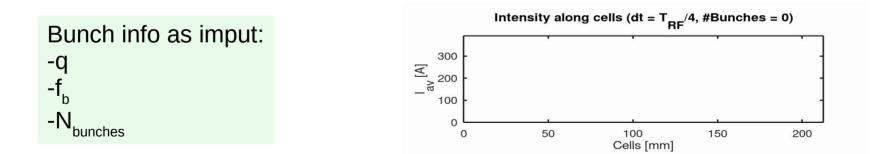


- Finite difference method Require **space** and **time discretization**
- **SPACE**: Mesh with N+1 points N CELLS

Max. deviation $\delta = 0.63\%$

> Shunt impedance comparison for CLIC's main linac.

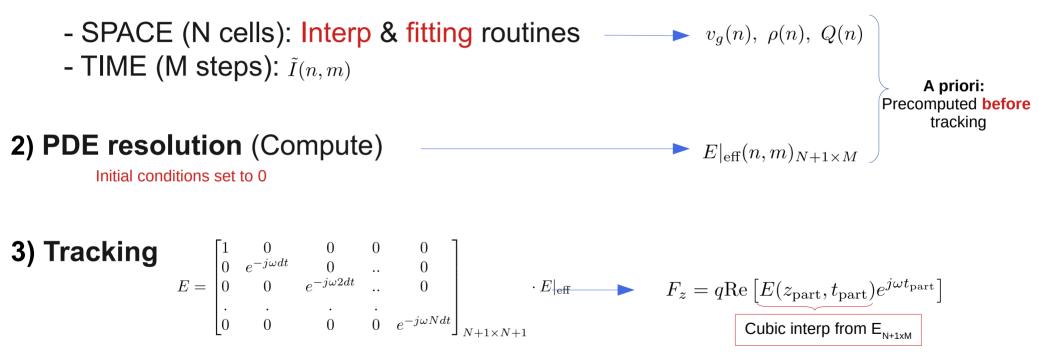
14.07.2022



Data obtained from [1].

- Finite difference method Require **space** and **time discretization**
- **TIME:** Mesh with M points

$$\tilde{I}(z,t,t_0) = \frac{q}{T}\chi(z,t-t_q(z,t_0)) \qquad \chi(n,t) = \begin{cases} 1 \text{ if nth bunch contained in } [t, t+T] \\ 0 \text{ otherwise} \end{cases}$$



II. From PDE to tracking

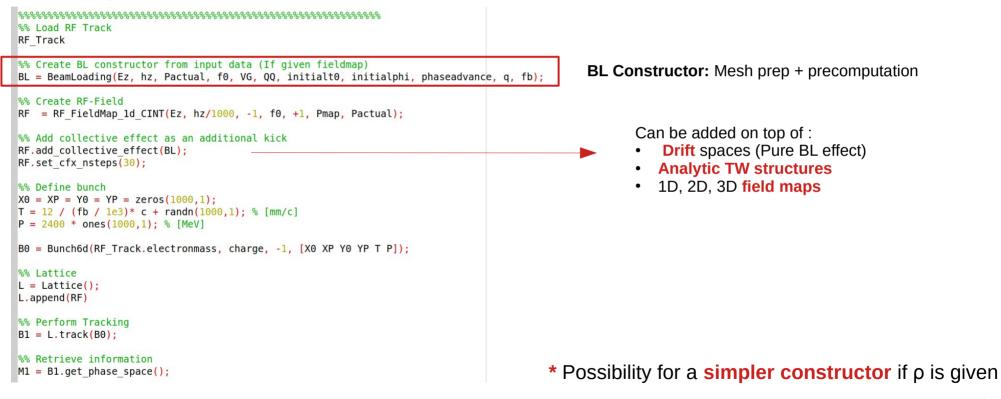
1) Mesh Characterization (Initialize)

II. Beam Loading in RF-Track

Workflow

- 1) Analytic calculation
- 2) Extensive tests in Octave
- 3) C++ implementation in RF-Track
- About **RF-Track** [7]:

VNIVERSITAT


- Beam **tracking** in field map including **space-charge** effects, **wakefields** ...
- Multiple species (arbitrary q and m)
- Parallel C++, interface with user via Octave and Python

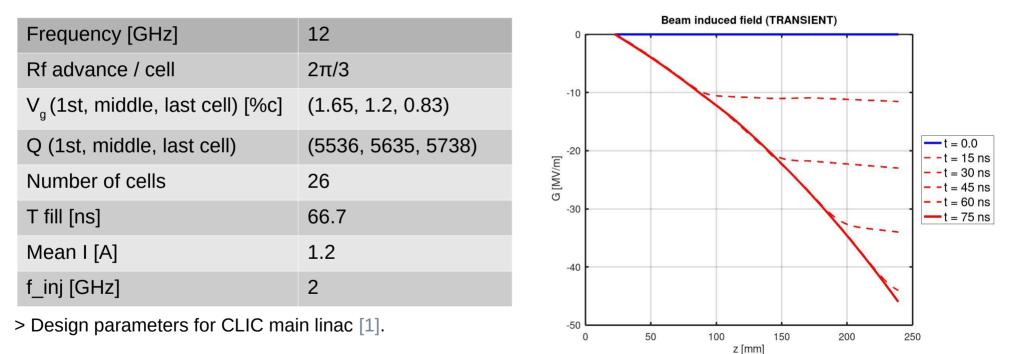
[7] A. Latina. *RF-Track Reference Manual*. CERN, Geneva, Switzerland, June 2020

II. Beam Loading in RF-Track

• **Example:** RF field + BL effect

Vniver§itat īdöValència

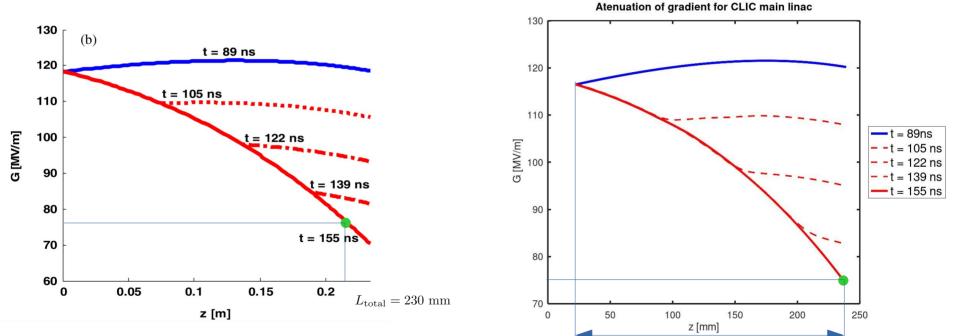
PART III: Results



III. CLIC main linac

Check of field calculation

$$(t_{own} = 0.73 \text{ s}, t_{RF-Track} = 0.15 \text{ s})$$



Vniver§itat dğValència

III. CLIC main linac

• Comparison for superposed gradient ($P_0 = 61.3$ MW, $t_{ini} = 89$ ns)

> Theoretical evolution of the gradient for CLIC main linac [1].

Vniver§itat dğValència $L_{\text{total}} = 213 \text{ mm}$

• **Passive** cavity providing **deceleration** due to BL effect

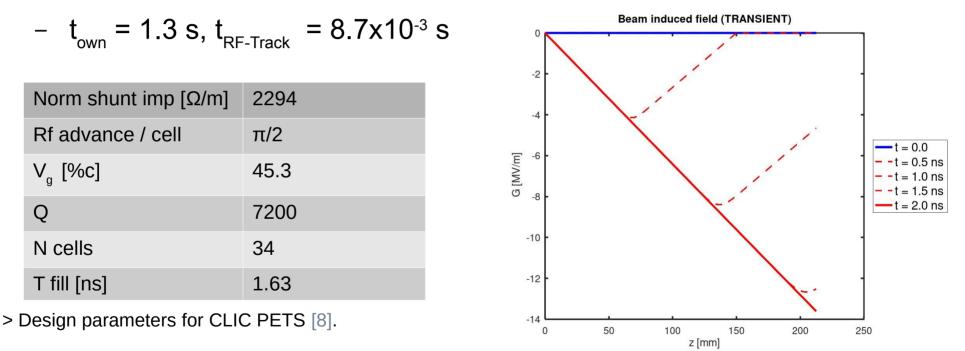
-
$$t_{own} = 1.3 \text{ s}, t_{RF-Track} = 8.7 \times 10^{-3} \text{ s}$$

Norm shunt imp $[\Omega/m]$	2294
Rf advance / cell	π/2
V _g [%c]	45.3
Q	7200
N cells	34
T fill [ns]	1.63

%% Create BL constructor from imput data
BL = BeamLoading(N0, f0, VG, QQ, RH0, phaseadvance, charge, fb, Nbunches);

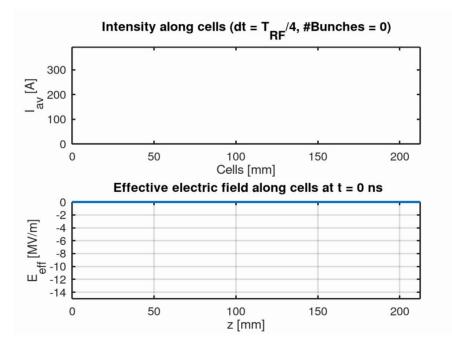
%% Create Drift D = Drift(Ltotal / 1000);

%% Attach BL effect
D.add_collective_effect(BL);
D.set_cfx_nsteps(N0);


> Design parameters for CLIC PETS [8].

[8] A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report, edited by M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte and N. Toge, CERN-2012-007

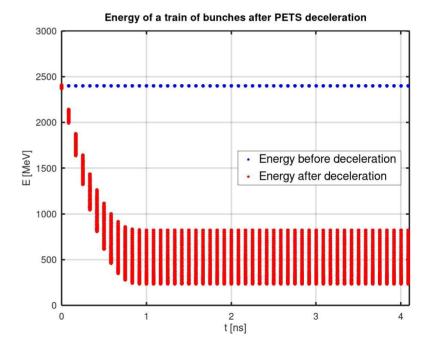
• Passive cavity providing deceleration due to BL effect


[8] A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report, edited by M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte and N. Toge, CERN-2012-007

14.07.2022

• **Passive** cavity providing **deceleration** due to BL effect

IFIC

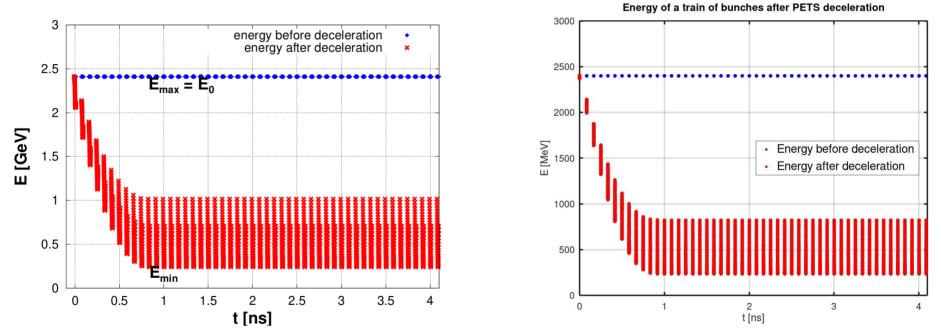

• Assess tracking along 1492 structures

-
$$t_{own} = 62s, t_{RF-Track} = 3.2 \times 10^{-1} s$$

f_injection [GHz]	11.99
Averaged intensity [A]	101.0
σ [mm/c]	1.000
Nbunches	2928
Macropart/bunch	10000
E0 [MeV]	2400

> Bunch train parameters for the drive beam at PETS [9].

14.07.2022


[9] Erik Adli (2009). A Study of the Beam Physics in the CLIC Drive Beam Decelerator. CERN Geneva. PhD Thesis.

VNIVERSITAT DÖVALÈNCIA

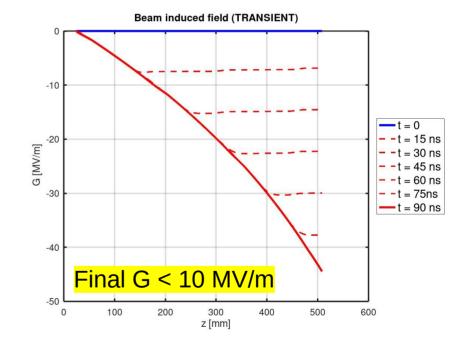
• Assess tracking along 1492 structures

> Energy distribution of the electrons in a train of bunches injected with E0 = 2.4 GeV in CLIC's PETS. Simulated results from Erik's Adli's thesis [9].

Vniver§itat döValència

Tracking along 1492 structures **Bunch energy after PETS deceleration** 900 - $t_{own} = 40s, t_{RF-Track} = 1.3 \times 10^{-2} s$ 0 800 8 $\eta = \frac{E_0 - E_{\min}}{E_0}$ 0 700 0 0 0 009 600 8 0000 $\eta_{\text{placet}} = 90\%$ 500 400 E_{min} [MeV] η_{min} [%] δ_F[%] E0 [MeV] 300 2400 241.6 89.7 0.67 200 0.99 0.995 1.005 1.01 1 t [ns]

III. High Pulse-Current Injector


Chosen model: Constant gradient structure (~54 MV/m) ۲

- $t_{own} = 3.4 \text{ s}, t_{RF-Track} = 8.1 \times 10^{-1} \text{ s}$		
Frequency [GHz]	11.9934	
Rf advance / cell	2π/3	
V _g (1st, last cell) [%c]	(2.90, 1.06)	
Q (1st, last cell)	(6710, 6670)	
Number of cells	58	
Peak imput power [MW]	24.9	
T fill [ns]	81.4	

> Preliminary design parameters for a HPCI. Obtained from internal communication with A. Grudiev and A.Latina

14.07.2022

Vniver§itat döValència



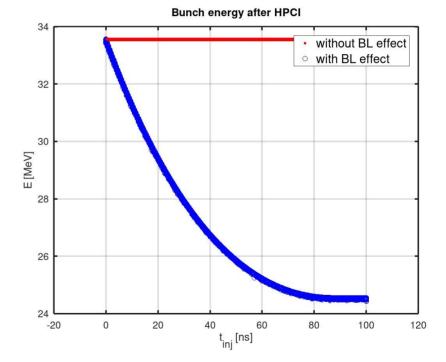
III. High Pulse-Current Injector

• **Chosen model**: Constant gradient structure (~54 MV/m)

f_injection [GHz]	2
Bunch charge [pC]	500
σ [mm/c]	0.299
Nbunches	312
E0 [MeV]	7

 Preliminary design parameters for a HPCI.
 Obtained from internal comunication with A. Grudiev and A.Latina

VNIVERSITAT


dovalencia

III. High Pulse-Current Injector

• **Chosen model**: Constant gradient structure (~54 MV/m)

f_injection [GHz]	2
Bunch charge [pC]	500
σ [mm/c]	0.299
Nbunches	312
E0 [MeV]	7

 Preliminary design parameters for a HPCI.
 Obtained from internal comunication with A. Grudiev and A.Latina

VNIVERSITAT

₪∂VALENCIA

Conclusions

- Beam loading = Additional excitation interacting with the beam
 - Decrease of accelerating gradient
 - **Transient** response \rightarrow **Steady** state
 - Bunches gain different energy depending on their injection time
 - Geometry and beam dependent Beam cavity interaction
 - Crucial in high-intensity machines
- Implementation in RF-Track (fast!)
 - Fully self-consistent model
 - Successful reproduction of previous results: CLIC, PETS, HPCI

VNIVERSITAT

Next steps

- SW for injector guns
 - Relativistic!
 - CLEAR perfect test-bench for BL effects

Possible applications

- ERL
- Positron sources
- Beam loading compensation studies ?

Acknowledgments

- Supervision, guidance and trust:
 - Andrea Latina (CERN, BE-ABP-LAF)
 - Nuria Fuster, Benito Gimeno, Daniel Esperante (UV Spain, IFIC CSIC)

- Useful material & discussions:
 - Alexej Grudiev, Hermann Pommerenke (CERN, SY-RF-MKS)

VNIVERSITA

References

- [1] A. Grudiev, A.Lunin, V. Yakovlev. Analytical solutions for transient and stead state beam loading in arbitrary travelling wave accelerating structures. Phys. Rev. Special topics 14, 052001 (2011)
- [2] P. Lapostolle. *Linear Accelerators*. North Holland Publishing Company, 1970 (Amsterdam, Holland)
- [3] Jackson, J. D. (1999). *Classical electrodynamics*.
- [4] Thomas P. Wangler. *RF linear accelerators*. Wiley-VCH 2008 (Amsterdam, Holland)
- **[5]** Venkatasubramanian, V. (1994). Tools for dynamic analysis of the general large power system using time-varying phasors. *International Journal of Electrical Power & Energy Systems*, 16(6), 365-376.

References

- [6] CAS Proceedings. Fifth General Accelerator Physics Course. (Jyväskylä, Finland) 1992.
- [7] A. Latina. *RF-Track Reference Manual*. CERN, Geneva, Switzerland, June 2020 DOI: 10.5281/zenodo.3887085
- [8] A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report, edited by M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte and N. Toge, CERN-2012-007
- [9] Erik Adli (2009). A Study of the Beam Physics in the CLIC Drive Beam Decelerator. PhD Thesis.

VNIVERSITAT

Thanks for your attention

Additional slide: Finite difference method (I)

• Discretization of quantities for a given N x M mesh

14.07.2022

$$\begin{split} G(z,t) &\to G(z_n,t_m) \coloneqq G(n,m) & v_g(z) \to v_{g,n} \\ \\ \frac{\partial G(z,t)}{\partial t} &\simeq \frac{G(n,m) - G(n,m-1)}{\mathrm{d}t} & Q(z) \to Q_n \\ \\ \frac{\partial G(z,t)}{\partial z} &\simeq \frac{G(n,m) - G(n-1,m)}{L} & \rho(z) \to \rho_n \\ \\ \tilde{I}(z,t) \to \tilde{I}(n,m) \end{split}$$

Here N is not the number of cells necessarily

Additional slide: Finite difference method (II)

• Then the PDE remains:

$$G(n, m+1) = dt(B(n)G(n, m) + \frac{v_g(n)}{L}G(n-1, m)) - C(n, m)$$

• With:

$$\begin{split} B(n) &= \frac{1}{2} \left. \frac{\mathrm{d}v_g}{\mathrm{d}z} \right|_n + \frac{\mathrm{d}\rho}{\mathrm{d}z} \frac{v_g(n)}{2\rho(n)} - \frac{\omega}{2Q(n)} - \frac{v_g(n)}{L} + \frac{1}{\mathrm{d}t} \\ C(n,m) &= \frac{\omega\rho(n)\tilde{I}(n,m)}{2} \end{split}$$

Additional slide: Finite difference method (III)

• Initialize G for calculation with initial conditions (no RF, unloaded)

$$G = \begin{bmatrix} G_{un}(1) & G_{un}(1) & \dots & G_{un}(1) \\ G_{un}(2) & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ G_{un}(N) & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} \mathsf{m}=1 \\ \mathsf{m}=2 \\ \\ \\ (N \times M) \end{bmatrix} G_{un}(i) = 0 \ \forall i = 1..N$$

• At each time step **dt**, the gradient along the cells is obtained as:

$$\begin{bmatrix} G(2,m+1) \\ G(3,m+1) \\ \vdots \\ G(N,m+1) \end{bmatrix}_{(N-1)\times 1} = \begin{bmatrix} \frac{v_g(2)}{L} & dt \cdot B(2) & 0 & \dots & 0 \\ 0 & \frac{v_g(3)}{L} & dt \cdot B(3) & \dots & 0 \\ & & & & \\ 0 & \dots & 0 & \frac{v_g(N)}{L} & dt \cdot B(N) \end{bmatrix}_{(N-1)} \cdot \begin{bmatrix} G(1,m) \\ G(2,m) \\ G(3,m) \\ \vdots \\ G(N,m) \end{bmatrix}_{N\times 1} + \begin{bmatrix} C(2,m) \\ C(3,m) \\ \vdots \\ C(N,m) \end{bmatrix}_{(N-1)\times 1}$$

