Quark-gluon plasma and the charm quark production in the quasiparticle approach

Valeriya Mykhaylova

Institute of Theoretical Physics University of Wrocław

In collaboration with C. Sasaki and K. Redlich

Work supported by the OPUS 16 and PRELUDIUM 20 grants by Polish National Science Center

V. M., C. Sasaki, Phys.Rev.D 103 (2021) [arXiv:2007.06846] V. M., M. Bluhm, C. Sasaki, K. Redlich, Phys.Rev.D 100 (2019) [arXiv:1906.01697]

Valeriya Mykhaylova (IFT Wrocław)

Motivation: Charm quark behavior in the QGP

- Quarkonium suppression, QGP existence (Matsui, Satz 1986)
- Heavy quarks (e.g. charm) survive through the QGP lifetime
- Production/Reduction of C quarks in the QGP?
- Better understanding of the in-medium heavy quark interaction

Task:

Evolution of C quarks in QGP with $N_f = 2 + 1$. Light, strange quarks and gluons are quasiparticles in equilibrium, charm quarks are "obstacles" with $M_c = 1.3$ GeV.

Quasiparticle Model Setup

QGP = weakly-interacting system of massive, dressed quarks and gluons

Interactions are encoded in dynamically generated masses m_i through effective coupling G(T) deduced from IQCD EoS (s/T^3) .

[V.M, M. Bluhm, C. Sasaki, K. Redlich, PRD 100 (2019) and preliminary; IQCD: Wuppertal-Budapest]

Valeriya Mykhaylova (IFT Wrocław)

Specific Shear Viscosity

Computed in kinetic theory under the relaxation time approximation

[V.M, M. Bluhm, C. Sasaki, K. Redlich, PRD 100 (2019)]

[J. Auvinen et al., Phys.Rev.C 102 (2020)]

Red curve on LHS = black on RHS.

$$\eta = \frac{1}{15T} \sum_{i=l,\bar{l},s,\bar{s},g} \int \frac{d^3p}{(2\pi)^3} \frac{p^4}{E_i^2} d_i \tau_i f_i^0 (1 \pm f_i^0) \, .$$

Time evolution of the QGP

For boost-invariant medium we juxtapose:

Iid: Bjorken scaling (1D expansion): [J. D. Bjorken, PRD 27 '83]

$$T(\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{1/3}$$

II_vis: (2+1)D 2nd order viscous hydro with η/s from QPM [J. Auvinen et al., PRC 102 [22]

5/10

Rate Equation for charm quarks

$$\partial_{\mu}(n_{c}[\lambda_{c}(\tau)] u^{\mu}) = \overbrace{\left(R_{l\bar{l}\to c\bar{c}} + R_{s\bar{s}\to c\bar{c}} + R_{gg\to c\bar{c}}\right)}^{R_{c} \, gain} \left(1 - \frac{(n_{c}[\lambda_{c}(\tau)])^{2}}{(n_{c \, eq})^{2}}\right) (1)$$

-

$$R_{c \ gain} = \bar{\sigma}_{I\bar{I}\to c\bar{c}} n_{q \ eq}^2 + \bar{\sigma}_{s\bar{s}\to c\bar{c}} n_{s \ eq}^2 + \frac{1}{2} \bar{\sigma}_{gg\to c\bar{c}} n_{g \ eq}^2$$
(2)

$$n_{c}[\lambda_{c}(\tau)] = d_{c} \int \frac{d^{3}p}{(2\pi)^{3}} \underbrace{\lambda_{c}(\tau) \left(e^{\sqrt{p^{2} + M_{c}^{2}}/T(\tau)} + \lambda_{c}(\tau)\right)^{-1}}_{=f_{c}, \text{ Jüttner distribution}}$$
(3)

$$\longrightarrow \lambda_c(\tau) =?$$
 (4)

[Biro et al., PRC 48 '93]

Charm quark fugacity - Attractor

Preliminary Fugacity of C quarks in perfect 1D vs viscous (2+1)D QGP

> [RHS: Heller, Spalinski, PRL 115 '15] $w = T\tau, f(w) = \frac{1}{w} \frac{\partial w}{\partial \tau}$

Production Rate of Charm Quarks

In perfect QGP

In viscous QGP

[Preliminary; Zhang et al., PRC 77 '08; Vogt, Levai, PRC 56 '97]

Valeriya Mykhaylova (IFT Wrocław)

Number of Charm Quarks

$$N_c = n_c[\lambda_c(\tau)] V[\tau], \tag{5}$$

$$V[\tau] = \pi R^2(\tau)\tau = \pi [R_0 + 0.1(\tau - \tau_0)^2]^2 \tau, \ R_0 = 7 \text{ fm}$$
(6)

[Preliminary; Zhang et al., PRC 77 '08; Vogt, Levai, PRC 56 '97]

Valeriya Mykhaylova (IFT Wrocław)

Summary

- Charm quarks are the important probes of the QGP properties
- The hydrodynamic attractor observed for λ_c
- Production rates agree with other models in certain regions of temperature and time
- Distinct evolution of $N_c(\tau)$ influence of dynamical masses and coupling in the cross-sections