Novel features of energy fluctuations and baryon number fluctuations in a subsystem of hot and dense relativistic gas

Arpan Das Institute of Nuclear Physics Polish Academy of Sciences Krakow, Poland XV Polish Workshop on Relativistic Heavy Ion Collision

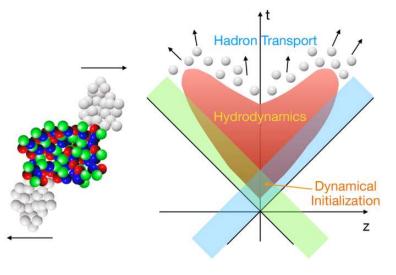
Collaborators: Wojciech Florkowski, Radoslaw Ryblewski, Rajeev Singh

Journal References: Acta Phys. Pol. B **52**, 1395 (2021); Phys.Rev.D 103 (2021) 9, L091502; Acta Phys. Pol. B **53**, 7-A5 (2022) Funding information: Polish National Science Center Grant No:2018/30/E/ST2/00432

1

Hydrodynamics

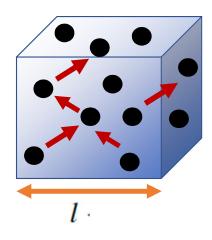
- Hydrodynamic description is a key element to model the space-time evolution of the fluid.
- ≻ Key concept: fluid element or fluid cell.



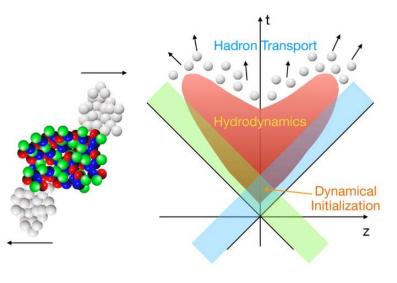
C. Shen, L. Yan, NUCL SCI TECH 31, 122 (2020).

Hydrodynamics

- Hydrodynamic description is a key element to model the space-time evolution of the fluid.
- ≻ Key concept: fluid element or fluid cell.



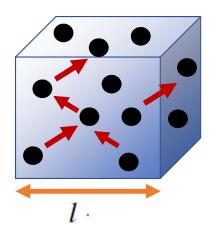
 Local thermal equilibrium: energy density, pressure, etc.



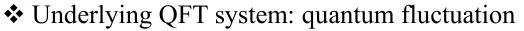
C. Shen, L. Yan, NUCL SCI TECH 31, 122 (2020).

Hydrodynamics

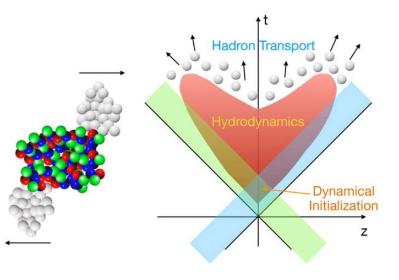
- Hydrodynamic description is a key element to model the space-time evolution of the fluid.
- ≻ Key concept: fluid element or fluid cell.



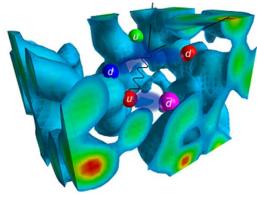
 Local thermal equilibrium: energy density, pressure, etc.



- Is the energy density a well defined concept for fluid cell of arbitrary size?
- Does quantum fluctuation play any role?

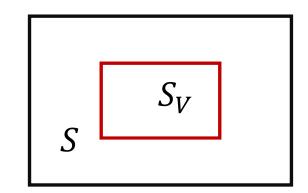


C. Shen, L. Yan, NUCL SCI TECH 31, 122 (2020).



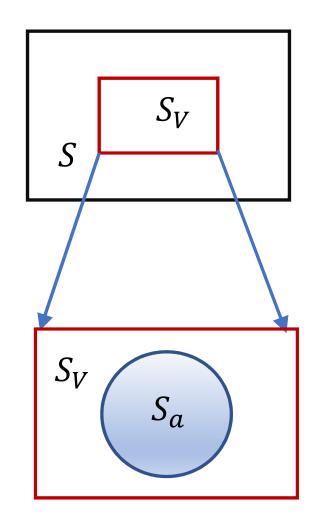
 \Box *S* is the larger system: closed system.

□ *S* is the larger system: closed system. □ S_V : canonical/grand canonical ensemble.



- \Box *S* is the larger system: closed system.
- \Box *S_V* : canonical/grand canonical ensemble.
- $\Box S_a$ is a subsystem of a larger system S_V .
- \Box Quantum statistical fluctuation within a small Gaussian subsystem S_a .

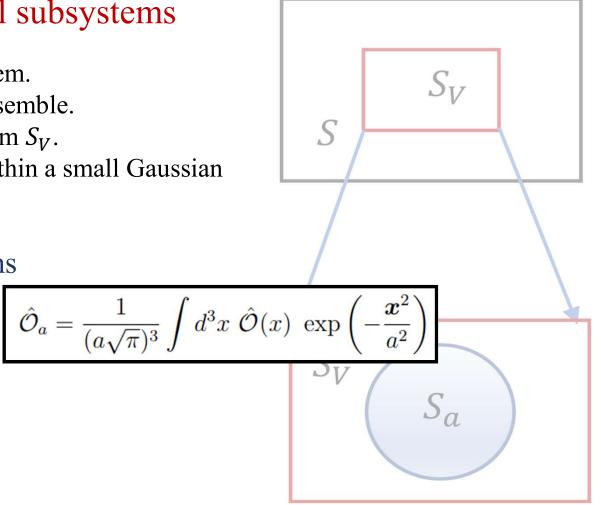
S. Coleman, Lectures of Sidney Coleman on Quantum Field Theory



- \Box *S* is the larger system: closed system.
- \Box *S_V* : canonical/grand canonical ensemble.
- $\Box S_a$ is a subsystem of a larger system S_V .
- □ Quantum statistical fluctuation within a small Gaussian subsystem S_a .

Measure of quantum fluctuations

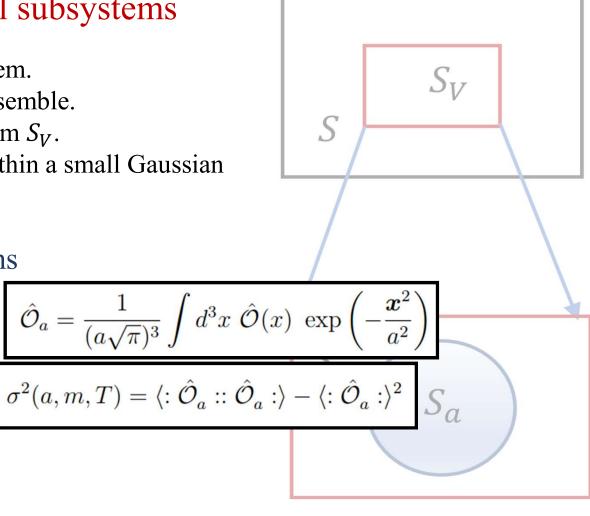
✓ Gaussian smeared QFT operator:



- \Box *S* is the larger system: closed system.
- \Box *S_V* : canonical/grand canonical ensemble.
- $\Box S_a$ is a subsystem of a larger system S_V .
- Quantum statistical fluctuation within a small Gaussian subsystem S_a .

Measure of quantum fluctuations

- ✓ Gaussian smeared QFT operator:
- ✓ Variance:



- \Box *S* is the larger system: closed system.
- \Box *S_V* : canonical/grand canonical ensemble.
- $\Box S_a$ is a subsystem of a larger system S_V .

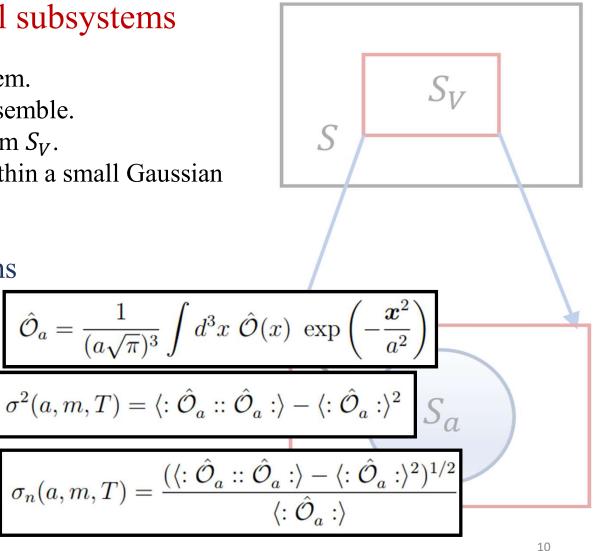
□ Quantum statistical fluctuation within a small Gaussian subsystem S_a .

Measure of quantum fluctuations

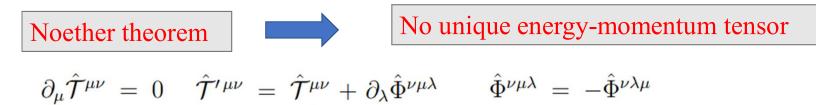
✓ Gaussian smeared QFT operator:

✓ Variance:

✓ Normalized standard deviation:



Energy density fluctuation: fermions



- Pseudo-gauge transformation
- Effect of pseudo-gauge transformation on the quantum fluctuations

Energy density fluctuation: fermions

Noether theorem No unique energy-momentum tensor

$$\partial_{\mu}\hat{\mathcal{T}}^{\mu\nu} = 0 \quad \hat{\mathcal{T}}'^{\mu\nu} = \hat{\mathcal{T}}^{\mu\nu} + \partial_{\lambda}\hat{\Phi}^{\nu\mu\lambda} \qquad \hat{\Phi}^{\nu\mu\lambda} = -\hat{\Phi}^{\nu\lambda\mu}$$

- Pseudo-gauge transformation
- Effect of pseudo-gauge transformation on the quantum fluctuations

Different choices of pseudo-gauge transformation

- $\checkmark \text{ Canonical Energy Momentum tensor (Can)} \quad \hat{\mathcal{T}}^{\mu\nu}_{\psi,Can} = \frac{i}{2} \bar{\psi} \gamma^{\mu} \mathcal{D}^{\nu} \psi, \ \mathcal{D}^{\mu} \equiv \overrightarrow{\partial}^{\mu} \overleftarrow{\partial}^{\mu}$
- $\checkmark \text{ Belinfante-Rosenfeld EMT (BR)} \qquad \hat{\mathcal{T}}_{\psi,BR}^{\mu\nu} = \frac{i}{2} \bar{\psi} \gamma^{\mu} \mathcal{D}^{\nu} \psi \frac{i}{16} \partial_{\lambda} \Big(\bar{\psi} \Big\{ \gamma^{\lambda}, \Big[\gamma^{\mu}, \gamma^{\nu} \Big] \Big\} \psi \Big).$
- ✓ de Groot-van Leeuwen-van Weert EMT (GLW)
- ✓ Hilgevoord- Wouthuysen EMT (HW)

Thermal average of QFT operator:

For two creation/annihilation operators $\langle a_r^{\dagger}(p)a_s(p')\rangle = (2\pi)^3 \delta_{rs} \delta^{(3)}(p-p')\mathfrak{f}_f(\omega_p)$

Thermal average of QFT operator:

- For two creation/annihilation operators $\langle a_r^{\dagger}(p)a_s(p')\rangle = (2\pi)^3 \delta_{rs} \delta^{(3)}(p-p') \mathfrak{f}_f(\omega_p)$
- For four creation/annihilation operators

W. T. Evans, D.A. Steer, Nucl. Phys. B 474, 481 (1996);

$$\langle a_r^{\dagger}(p) a_s^{\dagger}(p') a_{r'}(k) a_{s'}(k') \rangle$$

$$= (2\pi)^6 \Big(\delta_{rs'} \delta_{r's} \delta^{(3)}(p-k') \, \delta^{(3)}(p'-k) \\ - \delta_{rr'} \delta_{ss'} \delta^{(3)}(p-k) \, \delta^{(3)}(p'-k') \Big) \mathfrak{f}_f(\omega_p) \mathfrak{f}_f(\omega_{p'})$$

Thermal average of QFT operator:

- For two creation/annihilation operators $\langle a_r^{\dagger}(p)a_s(p')\rangle = (2\pi)^3 \delta_{rs} \delta^{(3)}(p-p') \mathfrak{f}_f(\omega_p)$
- For four creation/annihilation operators

W. T. Evans, D.A. Steer, Nucl. Phys. B 474, 481 (1996);

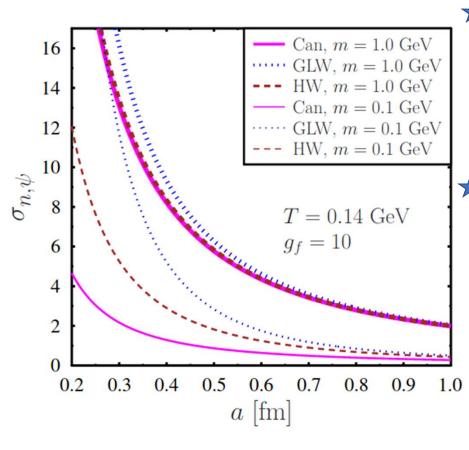
$$\begin{aligned} \langle a_r^{\dagger}(p) a_s^{\dagger}(p') a_{r'}(k) a_{s'}(k') \rangle \\ &= (2\pi)^6 \Big(\delta_{rs'} \delta_{r's} \delta^{(3)}(p-k') \, \delta^{(3)}(p'-k) \\ &- \delta_{rr'} \delta_{ss'} \delta^{(3)}(p-k) \, \delta^{(3)}(p'-k') \Big) \mathfrak{f}_f(\omega_p) \mathfrak{f}_f(\omega_{p'}) \end{aligned}$$

Results for quantum fluctuations

$$\langle : \hat{\mathcal{T}}_{\psi,Can,a}^{tt} : \rangle = 4 \int \frac{d^3 p}{(2\pi)^3} \,\omega_{\mathbf{p}} \,\mathfrak{f}_f(\omega_{\mathbf{p}}) \equiv \varepsilon_{Can}(T,m) \\ = \langle : \hat{\mathcal{T}}_{\psi,BR,a}^{tt} : \rangle = \langle : \hat{\mathcal{T}}_{\psi,GLW,a}^{tt} : \rangle = \langle : \hat{\mathcal{T}}_{\psi,HW,a}^{tt} : \rangle.$$

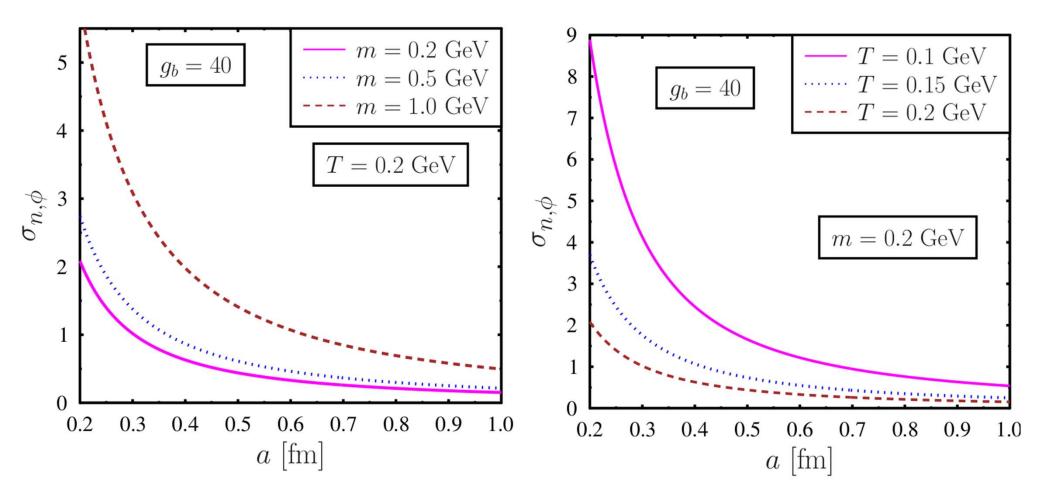
Mean value does not depend on any specific choice of energy-momentum tensor.It also does not depend on the scale.

15

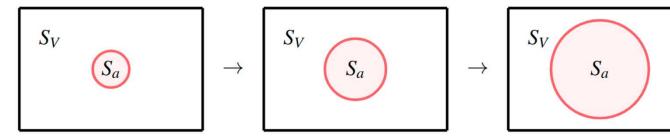


$$\begin{aligned} & \mathbf{\sigma}^{2}_{\psi,Can}(a,m,T) = 2 \int dP \ dP' \mathfrak{f}_{f}(\omega_{\mathbf{p}}) (1 - \mathfrak{f}_{f}(\omega_{\mathbf{p}'})) \\ & \times \left[(\omega_{\mathbf{p}} + \omega_{\mathbf{p}'})^{2} (\omega_{\mathbf{p}} \omega_{\mathbf{p}'} + \mathbf{p} \cdot \mathbf{p}' + m^{2}) e^{-\frac{a^{2}}{2} (\mathbf{p} - \mathbf{p}')^{2}} \\ & - (\omega_{\mathbf{p}} - \omega_{\mathbf{p}'})^{2} (\omega_{\mathbf{p}} \omega_{\mathbf{p}'} + \mathbf{p} \cdot \mathbf{p}' - m^{2}) e^{-\frac{a^{2}}{2} (\mathbf{p} + \mathbf{p}')^{2}} \right] \\ & \varepsilon \to g\varepsilon, \quad \sigma^{2} \to g\sigma^{2} \end{aligned}$$

- □At small scales quantum fluctuations can be significant
- Quantum fluctuations decreases with the length scale
- Quantum fluctuations are pseudo-gauge dependent
- □ Practical way to find a fluid cell size



Thermodynamic limit (large volume limit)



Thermodynamic limit (large volume limit)

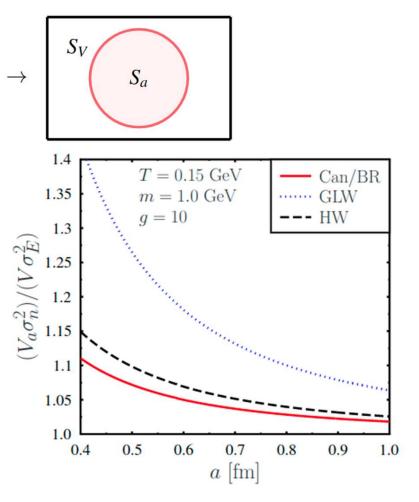
 S_V

$$S_a \rightarrow S_V S_a$$

$$V_a \sigma_{n,\psi,Can}^2 = V_a \sigma_{n,\psi,GLW}^2 = \frac{T^2 C_{V,\psi}}{\varepsilon_{Can}^2} = V \frac{\langle E^2 \rangle - \langle E \rangle^2}{\langle E \rangle^2} \equiv V \sigma_E^2.$$

$$V_a = a^3 (2\pi)^{3/2}$$

- Volume scales quantum fluctuations correctly give rise to known statistical fluctuations.
- For large mass the large volume limit can be obtained at a small length scale.



19

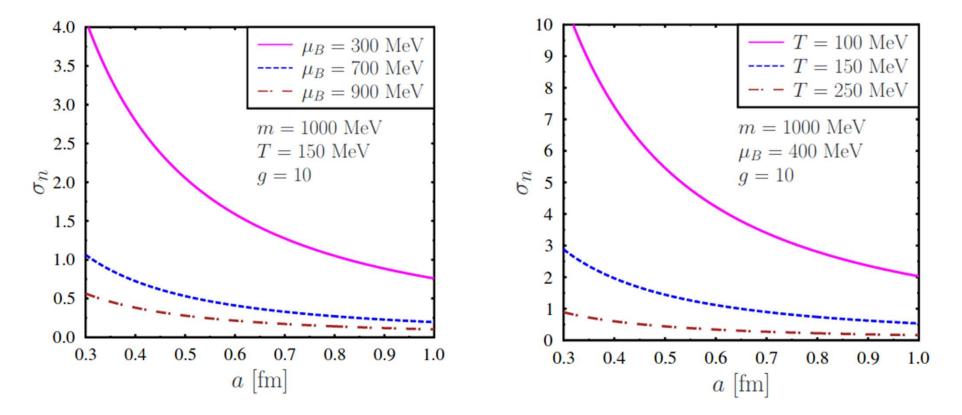
Quantum statistical fluctuation of Baryon number

- ✤ Hunt for the QCD critical point is one of the main goals of HIC experiments.
- Signal for quark-hadron transition: Event-by-event fluctuations of conserved net baryon number.
- ✤ We consider the baryon number operator

$$\hat{\cal O}=ar{\psi}\gamma^0\psi$$

• The mean value
$$\left\langle : \hat{\mathcal{J}}_a^0 : \right\rangle = 2 \int \mathrm{d}\mathcal{K} \left[f\left(\omega_{\vec{k}}\right) - \bar{f}\left(\omega_{\vec{k}}\right) \right].$$

- It is clear that the mean value of the baryon number operator does not depend on the scale.
- ✤ Using the thermal average prescription one can also calculate the fluctuation.



Results for baryon number fluctuations

Once again we observe that for small system size effect of quantum fluctuations can be significant.

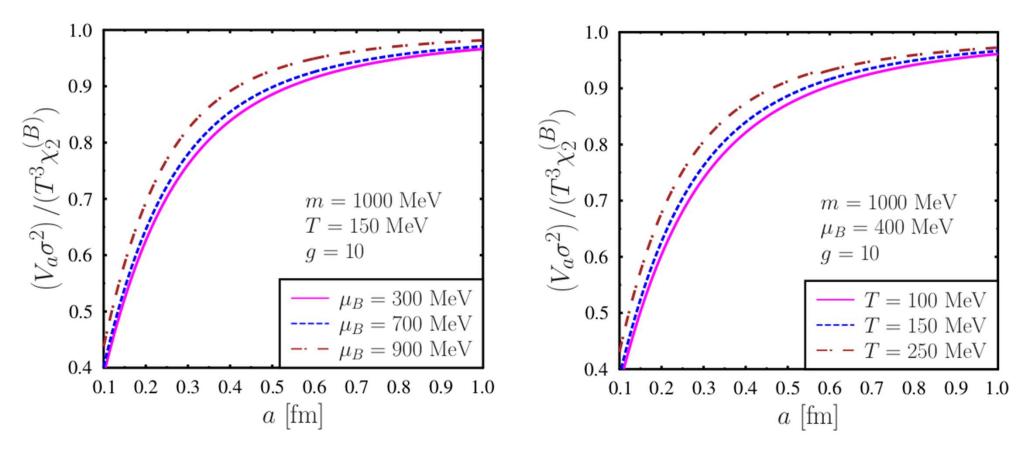
Thermodynamic limit (large volume limit)

*To obtain the thermodynamic limit we look into susceptibilities

✤ Volume scaled fluctuation is related to the second order susceptibility.

$$\lim_{a \to \infty} V_a \left[\left\langle : \hat{\mathcal{J}}_a^0 :: \hat{\mathcal{J}}_a^0 : \right\rangle - \left\langle : \hat{\mathcal{J}}_a^0 : \right\rangle^2 \right] = T^3 \chi_2^{(B)}, \quad V \left\langle (n_B - \langle n_B \rangle)^2 \right\rangle = T^3 \chi_2^{(B)},$$

22



We can obtain the known statistical fluctuation of baryon number in the large volume limit.
But in the small volume limit the quantum mechanical effects can be significant.

Summary and conclusions

- > Novel aspects of the energy density fluctuations:
 - \checkmark Scaling or variation of fluctuation with the system size.
 - \checkmark pseudo-gauge dependence of quantum statistical fluctuations
 - ✓ large volume limit the quantum statistical fluctuation give rise to standard statistical fluctuation.
- > Practical way to determine the coarse-graining size or the notion of the fluid cell.
- ➢ If the coarse-graining size is small then the quantum mechanical effects would not be negligible.
- Also important to determine the coarse-graining size independent of the pseudo-gauge choice.
- Baryon number fluctuation in small systems is also significantly different from the standard statistical fluctuations.
- \succ These results might be relevant for small systems.

Thank you for your attention

Backup slides

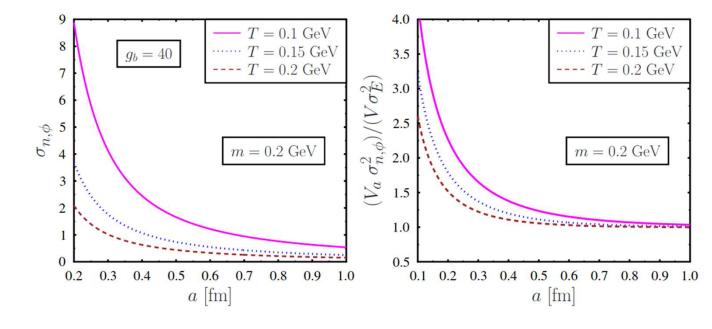
For scalar field:

Thermal average:

$$\begin{split} \langle \mathfrak{a}_{p}^{\dagger}\mathfrak{a}_{p'}^{} \rangle &= \delta^{(3)}(p - p')\mathfrak{f}_{b}(\omega_{p}), \\ \langle \mathfrak{a}_{p}^{\dagger}\mathfrak{a}_{p'}^{\dagger}\mathfrak{a}_{k}\mathfrak{a}_{k'}^{} \rangle &= \left(\delta^{(3)}(p - k) \ \delta^{(3)}(p' - k') \right. \\ &+ \delta^{(3)}(p - k') \ \delta^{(3)}(p' - k) \left. \right) \mathfrak{f}_{b}(\omega_{p})\mathfrak{f}_{b}(\omega_{p'}). \end{split}$$

Variance:

$$\sigma_{\phi}^{2}(a,m,T) = \int dP \ dP' \mathfrak{f}_{b}(\omega_{p}) (1+\mathfrak{f}_{b}(\omega_{p'}))$$
$$\times \left[(\omega_{p}\omega_{p'} + \boldsymbol{p} \cdot \boldsymbol{p}' + m^{2})^{2} e^{-\frac{a^{2}}{2}(\boldsymbol{p}-\boldsymbol{p}')^{2}} + (\omega_{p}\omega_{p'} + \boldsymbol{p} \cdot \boldsymbol{p}' - m^{2})^{2} e^{-\frac{a^{2}}{2}(\boldsymbol{p}+\boldsymbol{p}')^{2}} \right]$$



EMT for different pseudo-gauges:

GLW case:

$$\begin{aligned} \hat{\mathcal{T}}^{\mu\nu}_{\psi,GLW} &= -\frac{1}{4m} \bar{\psi} \mathcal{D}^{\mu} \mathcal{D}^{\nu} \psi - g^{\mu\nu} \mathcal{L}_D \\ &= \frac{1}{4m} \Big[-\bar{\psi} (\partial^{\mu} \partial^{\nu} \psi) + (\partial^{\mu} \bar{\psi}) (\partial^{\nu} \psi) + (\partial^{\nu} \bar{\psi}) (\partial^{\mu} \psi) \\ &- (\partial^{\mu} \partial^{\nu} \bar{\psi}) \psi \Big]. \end{aligned}$$

HW case:

$$\hat{\mathcal{T}}^{\mu\nu}_{\psi,HW} = \hat{\mathcal{T}}^{\mu\nu}_{\psi,Can} + \frac{i}{2m} \Big(\partial^{\nu} \bar{\psi} \sigma^{\mu\beta} \partial_{\beta} \psi + \partial_{\alpha} \bar{\psi} \sigma^{\alpha\mu} \partial^{\nu} \psi \Big) \\ - \frac{i}{4m} g^{\mu\nu} \partial_{\lambda} \left(\bar{\psi} \sigma^{\lambda\alpha} \mathcal{D}_{\alpha} \psi \right),$$

27

Quantum fluctuations of energy for different pseudo-gauges:

$$\sigma_{\psi,GLW}^2(a,m,T) = \frac{1}{2m^2} \int dP \ dP' \mathfrak{f}_f(\omega_p) (1 - \mathfrak{f}_f(\omega_{p'}))$$
$$\times \left[(\omega_p + \omega_{p'})^4 \left(\omega_p \omega_{p'} - p \cdot p' + m^2 \right) e^{-\frac{a^2}{2} (p - p')^2} - (\omega_p - \omega_{p'})^4 \left(\omega_p \omega_{p'} - p \cdot p' - m^2 \right) e^{-\frac{a^2}{2} (p + p')^2} \right],$$

$$\begin{aligned} \sigma_{\psi,HW}^2(a,m,T) &= \frac{2}{m^2} \int dP \ dP' \mathfrak{f}_f(\omega_{\boldsymbol{p}}) (1 - \mathfrak{f}_f(\omega_{\boldsymbol{p}'})) \\ &\times \Big[\left(\omega_{\boldsymbol{p}} \omega_{\boldsymbol{p}'} + \boldsymbol{p} \cdot \boldsymbol{p}' + m^2 \right)^2 \left(\omega_{\boldsymbol{p}} \omega_{\boldsymbol{p}'} - \boldsymbol{p} \cdot \boldsymbol{p}' + m^2 \right) e^{-\frac{a^2}{2} (\boldsymbol{p} - \boldsymbol{p}')^2} \\ &- (\omega_{\boldsymbol{p}} \omega_{\boldsymbol{p}'} + \boldsymbol{p} \cdot \boldsymbol{p}' - m^2)^2 (\omega_{\boldsymbol{p}} \omega_{\boldsymbol{p}'} - \boldsymbol{p} \cdot \boldsymbol{p}' - m^2) e^{-\frac{a^2}{2} (\boldsymbol{p} + \boldsymbol{p}')^2} \Big], \end{aligned}$$

.,	O
/	$^{\circ}$

Quantum baryon number fluctuations:

$$\begin{aligned} \sigma^{2}(a,m,\beta,\mu_{B}) &= \langle : \hat{\mathcal{J}}_{a}^{0} :: \hat{\mathcal{J}}_{a}^{0} : \rangle - \langle : \hat{\mathcal{J}}_{a}^{0} : \rangle^{2} \\ &= \int \frac{d\mathcal{K}}{\omega_{\vec{k}}} \frac{d\mathcal{K}'}{\omega_{\vec{k}'}} (\omega_{\vec{k}} \omega_{\vec{k}'} + \vec{k} \cdot \vec{k}' + m^{2}) e^{-\frac{a^{2}}{2}(\vec{k} - \vec{k}')^{2}} \times \\ & \left[f(\omega_{\vec{k}}) \left(1 - f(\omega_{\vec{k}'}) \right) + \bar{f}(\omega_{\vec{k}}) (1 - \bar{f}(\omega_{\vec{k}'})) \right] \\ &- \int \frac{d\mathcal{K}}{\omega_{\vec{k}}} \frac{d\mathcal{K}'}{\omega_{\vec{k}'}} (\omega_{\vec{k}} \omega_{\vec{k}'} + \vec{k} \cdot \vec{k}' - m^{2}) e^{-\frac{a^{2}}{2}(\vec{k} + \vec{k}')^{2}} \times \\ & \left[f(\omega_{\vec{k}}) (1 - \bar{f}(\omega_{\vec{k}'})) + \bar{f}(\omega_{\vec{k}}) (1 - f(\omega_{\vec{k}'})) \right] \end{aligned}$$

