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Hard probes in heavy-ion collisions

HARD PROBES IN QGP - old and broad field - actively investigated

HARD PROBES IN GLASMA - can the effect of the early stage be important?

A model to assess this effect is based on:

• expansion of glasma fields in the proper time → properties of glasma
→ analytical approach to study the initial state
→ purely classical

• Fokker-Planck equation → energy loss of hard probes
→ allows to study the interaction of a probe with the medium

A. Czajka (NCBJ, Warsaw) Transport of hard probes through glasma



Nuclei before the collision

before the collision after the collision

MV model - a specific realization of CGC:

∗ large x partons represented by Jµ(x−, ~x⊥) = δµ+ρ(x−, ~x⊥)

∗ small x partons represented by soft gluon fields βµ(x): Fµν = i
g

[Dµ, Dν ] with

Dµ = ∂µ − igβµ

∗ gluons are in the saturation regime controlled by the saturation scale Qs

∗ separation scale between small-x and large-x partons is fixed

Yang-Mills equations: [Dµ, Fµν ] = Jν

solutions: β−(x−, ~x⊥) = 0 βi(x−, ~x⊥) = θ(x−) i
g
U(~x⊥)∂iU†(~x⊥)

U(~x⊥)−Wilson line
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Glasma

∗ glasma fields α(τ, ~x⊥) and αi⊥(τ, ~x⊥) develop in the forward light-cone region:

α+(x) = x+α(τ, ~x⊥) α−(x) = −x−α(τ, ~x⊥) αi(x) = αi⊥(τ, ~x⊥)

∗ evolve in time parametrized by τ =
√
t2 − z2 =

√
2x+x−

∗ are boost-independent

∗ gluon fields obtained as solutions to classical source-less Yang-Mills equations

∗ current dependence enters through boundary conditions, which connect different
light-cone sectors

αi⊥(τ = 0, ~x⊥) = βi1(~x⊥) +βi2(~x⊥) α(τ = 0, ~x⊥) = − ig
2

[βi1(~x⊥), βi2(~x⊥)]

∗ general solutions to YM equations not known

∗ here: temporal evolution of glasma fields is obtained in the proper time
expansion (Chen, Fries, Kapusta, Li, Phys. Rev. C 92, 064912 (2015))

αi⊥(τ, ~x⊥) =
∞∑
n=0

τnαi⊥(n)(~x⊥), α(τ, ~x⊥) =
∞∑
n=0

τnα(n)(~x⊥)

Summary of the method:

ρ(x−, ~x⊥) → β(x−, ~x⊥) → α(0, ~x⊥) → α(τ, ~x⊥) → E(τ, η, ~x⊥), B(τ, η, ~x⊥)
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Correlators of gauge potentials

• colour charge distributions are not known → average over colour sources
assuming a Gaussian distribution within each nucleus

〈ρa(x−, ~x⊥)ρb(y
−, ~y⊥)〉 = g2δabλ(x−, ~x⊥)δ(x− − y−)δ2(~x⊥ − ~y⊥)

λ(x−, ~x⊥) - volume density of sources

• potentials of different nuclei are uncorrelated: 〈βi1aβ
j
2b〉 = 0

Basic building block: 2-point correlator

δabB
ij(~x⊥, ~y⊥) ≡ lim

w→0
〈βia(x∓, ~x⊥)βjb (y∓, ~y⊥)〉

Bij(~x⊥, ~y⊥) =
2

g2NcΓ̃(~x⊥, ~y⊥)

(
exp

[
g4Nc

2
Γ̃(~x⊥, ~y⊥)

]
− 1

)
∂ix∂

j
y γ̃(~x⊥, ~y⊥)

Γ̃ and γ̃ - given by Bessel functions and the charge density density

• IR regulator: m ∼ ΛQCD - chosen so that because of confinement the effect of
valence sources dies off at transverse length scales larger than 1/ΛQCD

• UV regulator: Qs - saturation scale

• Bij(~x⊥, ~y⊥) - needed to study transport of hard probes through the medium

• lim~x⊥→~y⊥ Bij(~x⊥, ~y⊥) - needed to study quantities encoded in Tµν

A. Czajka (NCBJ, Warsaw) Transport of hard probes through glasma



Energy density and pressure of glasma

Energy-momentum tensor:

Tµν = 2Tr
[
FµλF ν

λ +
1

4
gµνFαβFαβ

]
, Fµν =

i

g
[Dµ, Dν ]

• Tµν was found in powers of τ up to τ6 order

• various profiles of E, pT , and pL for different geometries of the collision and
different charge densities were studied
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→ E, pT (and pL) are smooth functions in time and space
→ proper time expansion works reasonably well for times τ̃ ∼ 0.5 (or τ ∼ 0.05 fm)
→ sensitivity to the geometry of the collision
→ dependence on azimuthal angle and rapidity emerges → anisotropies
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Angular momentum of glasma

• large angular momentum is expected to be generated in non-central collisions
• angular momentum at RHIC energies

Gao et al, Phys. Rev C 77, 044902 (2008)

• our result: angular momentum as a function of the impact parameter
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- the shape and the position of the peak similar
- the result at RHIC energies ∼ 105 bigger than our results
- most of the momentum of the incoming nuclei is NOT transmitted to the glasma
- small angular momentum of the glasma → no polarization effect at highest
collision energies
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Energy loss of a probe: Fokker-Planck equation

Evolution equation on the distribution function of heavy quarks:
Mrówczyński, Eur. Phys. J, A54 no 3, 43 (2018)(

D −∇α
pX

αβ(v)∇β
p −∇α

pY
α(v)

)
n(t,x,p) = 0

n(t,x,p) - distribution of hard probes D ≡ ∂
∂t

+ v · ∇

Collision terms:

Xαβ(v) =
1

2Nc

∫ t

0
dt′〈Fαa (t,x)Fβa (t′,x− v(t− t′))〉 Y α(v) = Xαβ v

β

T

T - temperature of a plasma that has the same energy density as in equilibrium
F(t, r) = g(E(t, r) + v ×B(t, r)) - color Lorentz force
g - constant coupling
E(t, r),B(t, r) - chromoelectric and chromomagnetic fields
v = p

Ep
- velocity of the probe:

v ' 1 - light quarks and gluons v ≤ 1 - heavy quarks

Collisional energy loss and transverse momentum broadening

−
dE

dx
=
v

T

vαvβ

v2
Xαβ(v) q̂ =

2

v

(
δαβ −

vαvβ

v2

)
Xαβ(v)
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Transport of hard probes - schematic picture

Hard probe traversing glasma at τ = 0 (λ‖, λ⊥ - correlation lengths)

→ momentum-space rapidity y = 1
2

ln
1+v‖
1−v‖

∗ experiments focus on the region y ∈ (−1, 1) → v‖ ∈ (−0.76, 0.76)
→ transport coefficients built up during the time that the probe spends within the
domain of correlated field
∗ this time determined by λ⊥ and v
∗ role of the velocity: v⊥ = 1 → dE/dx is minimal and q̂ is maximal
→ transport coefficients saturate when the probe leaves the region of correlated fields
→ at higher order in τ → calculations needed

Consistency and reliability of the approach are fixed by convergence of the proper
time expansion and saturation of the results.
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Time dependence of q̂ and dE/dx

• dE/dx and q̂ calculated up to τ5 order

• parameters m = 0.2 GeV, Qs = 2 GeV, Nc = 3, g = 1

• in case of dE/dx we need temperature T :

εQGP = π2

60

(
4(N2

c − 1) + 7NfNc
)
T 4

εQGP = 130.17
(
15.9773− 29.6759 τ̃2 + 42.6822 τ̃4 − 49.2686 τ̃6

)
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• q̂: saturation observed before the τ expansion breaks down,
q̂ ' 6 GeV2/fm - maximal value,
similar result was found using real-time QCD calculations
Ipp, Müller, Schuh, Phys. Lett. B 810, 135810 (2020)

• dE/dx: reaches a maximal value 0.9 GeV/fm, no saturation → order of
magnitude estimate only
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Velocity dependence of q̂

Purely transverse motion of hard probes through the glasma (v‖ = 0)
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• the results at orders τ4 and τ5 agree quite well up to about τ ∼ 0.07− 0.08 fm

• the probe spends less time in the region of correlated fields →reduction of the
coefficient for ultra-relativistic quarks
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Space-time rapidity dependence of q̂

dependence on spatial rapidity η → dependence on the initial position of the probe in
the glasma
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• q̂ at orders τ4 and τ5 agree well up to τ ' 0.07 fm

• q̂ is weakly dependent on η fo small values of η (CGC is expected to work best
in the region of mid-spatial-rapidity region)

A. Czajka (NCBJ, Warsaw) Transport of hard probes through glasma



Dependence on Qs and m
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→ q̂ sensitive to the choice of Qs and m
→ decreasing Qs decreases the maximal value of q̂ but extends the validity region of τ
→ Qs can be treated as a scaling parameter of the collision energy:
by decreasing Qs we go from higher to lower collision energies (from LHC to RHIC
collision energies) and observe reduction in q̂

→ reduction in q̂ at τ = 0.6 fm for high-pT hadron traversing hydrodynamic stage at
the RHIC energies compared to LHC energies observed by the JET Collaboration
K. M. Burke et al (JET Collaboration), Phys. Rev. C 90, 014909 (2014)
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Glasma impact on jet quenching

Total accumulated transverse momentum: ∆p2T =
∫ L
0 dt q̂(t)

• non-equilibrium case: ∆p2T

∣∣∣non−eq
= 1

2
q̂maxt0 + 1

2
q̂0(t0 − tmax)

• equilibrium case: ∆p2T

∣∣∣eq = 3T 3
0 t0 ln L

t0

where we used q̂(t) = 3T 3 and T = T0
(
t0
t

)1/3
• parameters:
q̂max ≈ 6 GeV2/fm, tmax ≈ 0.06 fm

L = 10 fm, q̂0 ≈ 1.4 GeV2/fm, t0 ≈ 0.6 fm, T0 = 0.45 GeV
JETSCAPE, Phys. Rev. C 104, 024905 (2021), C. Shen et al, Phys. Rev. C 84, 044903 (2011)

∆p2T

∣∣∣non−eq

∆p2T

∣∣∣eq = 0.93

Non-equilibrium phase gives comparable contribution to the radiative energy loss as
the equilibrium phase.
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Summary and conclusions

∗ Glasma properties and transport of hard probes through glasma studied in the
proper time expansion

∗ Many physical characteristics of glasma dynamics calculated

∗ Impact of the glasma on hard probes quantified

∗ Convergence of the proper time expansion tested

• Both q̂ and dE/dx are found to be relatively large

• Our approach is most reliable for probes moving transversally to the collision axis

Significant impact of glasma on hard probes
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